دانلود مقاله انگلیسی رایگان:Synthetic-Neuroscore: استفاده از یک رابط عصبی هوش مصنوعی برای ارزیابی شبکه های خصمانه تولید - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی هوش مصنوعی رایگان
  • Synthetic-Neuroscore: Using a neuro-AI interface for evaluating generative adversarial networks Synthetic-Neuroscore: Using a neuro-AI interface for evaluating generative adversarial networks
    Synthetic-Neuroscore: Using a neuro-AI interface for evaluating generative adversarial networks

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Synthetic-Neuroscore: Using a neuro-AI interface for evaluating generative adversarial networks


    ترجمه فارسی عنوان مقاله:

    Synthetic-Neuroscore: استفاده از یک رابط عصبی هوش مصنوعی برای ارزیابی شبکه های خصمانه تولید


    منبع:

    Sciencedirect - Elsevier - Neurocomputing, 405 (2020) 26-36. doi:10.1016/j.neucom.2020.04.069


    نویسنده:

    Zhengwei Wang a , 1 , ∗, Qi She b , AlanF. Smeaton c , TomásE. Ward c , Graham Healy c


    چکیده انگلیسی:

    Generative adversarial networks (GANs) are increasingly attracting attention in the computer vision, nat- ural language processing, speech synthesis and similar domains. Arguably the most striking results have been in the area of image synthesis. However, evaluating the performance of GANs is still an open and challenging problem. Existing evaluation metrics primarily measure the dissimilarity between real and generated images using automated statistical methods. They often require large sample sizes for evalua- tion and do not directly reflect human perception of image quality. In this work, we describe an evaluation metric we call Neuroscore , for evaluating the performance of GANs, that more directly reflects psychoperceptual image quality through the utilization of brain signals. Our results show that Neuroscore has superior performance to the current evaluation metrics in that: (1) It is more consistent with human judgment; (2) The evaluation process needs much smaller numbers of samples; and (3) It is able to rank the quality of images on a per GAN basis. A convolutional neural network (CNN) based neuro-AI interface is proposed to predict Neuroscore from GAN-generated images directly without the need for neural responses. Importantly, we show that including neural responses during the training phase of the network can significantly improve the pre- diction capability of the proposed model. Materials related to this work are provided at https://github. com/villawang/Neuro- AI- Interface .
    Keywords: Neuroscore | Generative adversarial networks | Neuro-AI interface | Brain-computer interface


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 11
    حجم فایل: 2213 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi