دانلود مقاله انگلیسی رایگان:شناسایی موقعیت داخلی بیماران برای هدایت مراقبت های مجازی: رویکرد هوش مصنوعی با استفاده از یادگیری ماشین و روش های دانش بنیان - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی هوش مصنوعی رایگان
  • Indoor location identification of patients for directing virtual care: An AI approach using machine learning and knowledge-based methods Indoor location identification of patients for directing virtual care: An AI approach using machine learning and knowledge-based methods
    Indoor location identification of patients for directing virtual care: An AI approach using machine learning and knowledge-based methods

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Indoor location identification of patients for directing virtual care: An AI approach using machine learning and knowledge-based methods


    ترجمه فارسی عنوان مقاله:

    شناسایی موقعیت داخلی بیماران برای هدایت مراقبت های مجازی: رویکرد هوش مصنوعی با استفاده از یادگیری ماشین و روش های دانش بنیان


    منبع:

    Sciencedirect - Elsevier - Artificial Intelligence In Medicine, 108 (2020) 101931. doi:10.1016/j.artmed.2020.101931


    نویسنده:

    William Van Woensela,*, Patrice C. Roya, Syed Sibte Raza Abidia, Samina Raza Abidib


    چکیده انگلیسی:

    In a digitally enabled healthcare setting, we posit that an individual’s current location is pivotal for supporting many virtual care services—such as tailoring educational content towards an individual’s current location, and, hence, current stage in an acute care process; improving activity recognition for supporting self-management in a home-based setting; and guiding individuals with cognitive decline through daily activities in their home. However, unobtrusively estimating an individual’s indoor location in real-world care settings is still a challenging problem. Moreover, the needs of location-specific care interventions go beyond absolute coordinates and require the individual’s discrete semantic location; i.e., it is the concrete type of an individual’s location (e.g., exam vs. waiting room; bathroom vs. kitchen) that will drive the tailoring of educational content or recognition of activities. We utilized Machine Learning methods to accurately identify an individual’s discrete location, together with knowledge-based models and tools to supply the associated semantics of identified locations. We considered clustering solutions to improve localization accuracy at the expense of granularity; and investigate sensor fusion-based heuristics to rule out false location estimates. We present an AI-driven indoor localization approach that integrates both data-driven and knowledge-based processes and artifacts. We illustrate the application of our approach in two compelling healthcare use cases, and empirically validated our localization approach at the emergency unit of a large Canadian pediatric hospital.
    Keywords: Virtual care | Ambient sensors | Indoor localization | Machine learning | Semantic web | eHealth platform | Data fusion | Self-management | Ambient assisted living | Activities of daily living


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 17
    حجم فایل: 7215 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi