دانلود مقاله انگلیسی رایگان:AI-Skin: تشخیص بیماری پوستی مبتنی بر خودآموزی و جمع آوری گسترده اطلاعات از طریق یک چارچوب حلقه بسته - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی هوش مصنوعی رایگان
  • AI-Skin: Skin disease recognition based on self-learning and wide data collection through a closed-loop framework AI-Skin: Skin disease recognition based on self-learning and wide data collection through a closed-loop framework
    AI-Skin: Skin disease recognition based on self-learning and wide data collection through a closed-loop framework

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    AI-Skin: Skin disease recognition based on self-learning and wide data collection through a closed-loop framework


    ترجمه فارسی عنوان مقاله:

    AI-Skin: تشخیص بیماری پوستی مبتنی بر خودآموزی و جمع آوری گسترده اطلاعات از طریق یک چارچوب حلقه بسته


    منبع:

    Sciencedirect - Elsevier - Information Fusion, 54 (2020) 1-9. doi:10.1016/j.inffus.2019.06.005


    نویسنده:

    Min Chen a , Ping Zhou a , Di Wu b , c , Long Hu a , ∗ , Mohammad Mehedi Hassan d , Atif Alamri e


    چکیده انگلیسی:

    There are a lot of hidden dangers in the change of human skin conditions, such as the sunburn caused by long-time exposure to ultraviolet radiation, which not only has aesthetic impact causing psychological depression and lack of self-confidence, but also may even be life-threatening due to skin canceration. Current skin disease researches adopt the auto-classification system for improving the accuracy rate of skin disease classification. However, the excessive dependence on the image sample database is unable to provide individualized diagnosis service for different population groups. To overcome this problem, a medical AI framework based on data width evolution and self-learning is put forward in this paper to provide skin disease medical service meeting the requirement of real time, extendibility and individualization. First, the wide collection of data in the close-loop information flow of user and remote medical data center is discussed. Next, a data set filter algorithm based on information entropy is given, to lighten the load of edge node and meanwhile improve the learning ability of remote cloud analysis model. In addition, the framework provides an external algorithm load module, which can be compatible with the application requirements according to the model selected. Three kinds of deep learning model, i.e., LeNet-5, AlexNet and VGG16, are loaded and compared, which have verified the universality of the algorithm load module. The experiment platform for the proposed real-time, individualized and extensible skin disease recognition system is built. And the system’s computation and communication delay under the interaction scenario between tester and remote data center are analyzed. It is demonstrated that the system we put forward is reliable and effective.
    Keywords: Skin disease recognition | Data width evolution | Self-learning process | Deep learning model


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 1641 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi