دانلود مقاله انگلیسی رایگان:هوش مصنوعی قابل توضیح (XAI): مفاهیم ، طبقه بندی ها ، فرصت ها و چالش ها در برابر هوش مصنوعی مسئول - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی هوش مصنوعی رایگان
  • Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
    Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI


    ترجمه فارسی عنوان مقاله:

    هوش مصنوعی قابل توضیح (XAI): مفاهیم ، طبقه بندی ها ، فرصت ها و چالش ها در برابر هوش مصنوعی مسئول


    منبع:

    Sciencedirect - Elsevier - Information Fusion, 58 (2020) 82-115. doi:10.1016/j.inffus.2019.12.012


    نویسنده:

    Alejandro Barredo Arrieta a , Natalia Díaz-Rodríguez b , Javier Del Ser a , c , d , ∗ , Adrien Bennetot b , e , f , Siham Tabik g , Alberto Barbado h , Salvador Garcia g , Sergio Gil-Lopez a , Daniel Molina g , Richard Benjamins h , Raja Chatila f , Francisco Herrera


    چکیده انگلیسی:

    In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence , namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.
    Keywords: Explainable Artificial Intelligence | Machine Learning | Deep Learning | Data Fusion | Interpretability | Comprehensibility | Transparency | Privacy | Fairness | Accountability | Responsible Artificial Intelligence


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 34
    حجم فایل: 2541 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi