دانلود مقاله انگلیسی رایگان:تولید مسیر حرکت گشتاور مفصل مچ پا مبتنی بر هوش مصنوعی برای کمک به راه رفتن رباتیک: اولین قدم ها - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی هوش مصنوعی رایگان
  • AI-based Reference Ankle Joint Torque Trajectory Generation for Robotic Gait Assistance: First Steps AI-based Reference Ankle Joint Torque Trajectory Generation for Robotic Gait Assistance: First Steps
    AI-based Reference Ankle Joint Torque Trajectory Generation for Robotic Gait Assistance: First Steps

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    AI-based Reference Ankle Joint Torque Trajectory Generation for Robotic Gait Assistance: First Steps


    ترجمه فارسی عنوان مقاله:

    تولید مسیر حرکت گشتاور مفصل مچ پا مبتنی بر هوش مصنوعی برای کمک به راه رفتن رباتیک: اولین قدم ها


    منبع:

    IEEE - 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC);2020; ; ;10.1109/ICARSC49921.2020.9096205


    نویسنده:

    Luís Moreira , Sara M. Cerqueira, Joana ,João Vilas-Boas , Cristina P. Santos


    چکیده انگلیسی:

    Robotic-based gait rehabilitation and assistance have been growing to augment and to recover motor function in subjects with lower limb impairments. There is interest in developing user-oriented control strategies to provide personalized assistance. However, it is still needed to set the healthy user-oriented reference joint trajectories, namely, reference ankle joint torque, that would be desired under healthy conditions. Considering the potential of Artificial Intelligence (AI) algorithms to model nonlinear relationships of the walking motion, this study implements and compares two offline AI-based regression models (Multilayer Perceptron and Long-Short Term Memory-LSTM) to generate healthy reference ankle joint torques oriented to subjects with a body height ranging from 1.51 to 1.83 m, body mass from 52.0 to 83.7 kg and walking in a flat surface with a walking speed from 1.0 to 4.0 km/h. The best results were achieved for the LSTM, reaching a Goodness of Fit and a Normalized Root Mean Square Error of 79.6 % and 4.31 %, respectively. The findings showed that the implemented LSTM has the potential to be integrated into control architectures of robotic assistive devices to accurately estimate healthy useroriented reference ankle joint torque trajectories, which are needed in personalized and Assist-As-Needed conditions. Future challenges involve the exploration of other regression models and the reference torque prediction for remaining lower limb joints, considering a wider range of body masses, heights, walking speeds, and locomotion modes.
    Keywords: Ankle Joint Torque Prediction | Artificial Intelligence | Control Strategies | Regression Models | Robotic Gait Rehabilitation


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 6
    حجم فایل: 419 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi