دانلود مقاله انگلیسی رایگان:رویکرد منطق فازی نوع 2 به هوش مصنوعی قابل توضیح برای انطباق با مقررات ، نتایج عادلانه مشتری و ثبات بازار در بخش مالی جهانی - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی هوش مصنوعی رایگان
  • A Type-2 Fuzzy Logic Approach to Explainable AI for regulatory compliance, fair customer outcomes and market stability in the Global Financial Sector A Type-2 Fuzzy Logic Approach to Explainable AI for regulatory compliance, fair customer outcomes and market stability in the Global Financial Sector
    A Type-2 Fuzzy Logic Approach to Explainable AI for regulatory compliance, fair customer outcomes and market stability in the Global Financial Sector

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    A Type-2 Fuzzy Logic Approach to Explainable AI for regulatory compliance, fair customer outcomes and market stability in the Global Financial Sector


    ترجمه فارسی عنوان مقاله:

    رویکرد منطق فازی نوع 2 به هوش مصنوعی قابل توضیح برای انطباق با مقررات ، نتایج عادلانه مشتری و ثبات بازار در بخش مالی جهانی


    منبع:

    IEEE - 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE);2020; ; ;


    نویسنده:

    Janet Adams ,Hani Hagras


    چکیده انگلیسی:

    The field of Artificial Intelligence (AI) is enjoying unprecedented success and is dramatically transforming the landscape of the financial services industry. However, there is a strong need to develop an accountability and explainability framework for AI in financial services, based on a risk-based assessment of appropriate explainability levels and techniques by use case and domain. This paper proposes a risk management framework for the implementation of AI in banking with consideration of explainability and outlines the implementation requirements to enable AI to achieve positive outcomes for financial institutions and the customers, markets and societies they serve. The work presents the evaluation of three algorithmic approaches (Neural Networks, Logistic Regression and Type 2 Fuzzy Logic with evolutionary optimisation) for nine banking use cases. We review the emerging regulatory and industry guidance on ethical and safe adoption of AI from key markets worldwide and compare leading AI explainability techniques. We will show that the Type-2 Fuzzy Logic models deliver very good performance which is comparable to or lagging marginally behind the Neural Network models in terms of accuracy, but outperform all models for explainability, thus they are recommended as a suitable machine learning approach for use cases in financial services from an explainability perspective. This research is important for several reasons: (i) there is limited knowledge and understanding of the potential for Type-2 Fuzzy Logic as a highly adaptable, high performing, explainable AI technique; (ii) there is limited cross discipline understanding between financial services and AI expertise and this work aims to bridge that gap; (iii) regulatory thinking is evolving with limited guidance worldwide and this work aims to support that thinking; (iv) it is important that banks retain customer trust and maintain market stability as adoption of AI increases.
    Keywords: Regulatory Compliance | Accountability and Explainability | Type-2 Fuzzy Logic | Neural Networks


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 8
    حجم فایل: 2057 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi