دانلود مقاله انگلیسی رایگان:رویکرد یادگیری تقویت برای بهینه سازی چند منظوره پویا - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • A Reinforcement Learning Approach for Dynamic Multi-objective Optimization A Reinforcement Learning Approach for Dynamic Multi-objective Optimization
    A Reinforcement Learning Approach for Dynamic Multi-objective Optimization

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    A Reinforcement Learning Approach for Dynamic Multi-objective Optimization


    ترجمه فارسی عنوان مقاله:

    رویکرد یادگیری تقویت برای بهینه سازی چند منظوره پویا


    منبع:

    Sciencedirect - Elsevier - Information Sciences, Journal Pre-proof. doi:10.1016/j.ins.2020.08.101


    نویسنده:

    Fei Zou, Gary G. Yen, Lixin Tang, Chunfeng Wang


    چکیده انگلیسی:

    Dynamic Multi-objective Optimization Problem (DMOP) is emerging in recent years as a major real-world optimization problem receiving considerable attention. Tracking the movement of Pareto front efficiently and effectively over time has been a central issue in solving DMOPs. In this paper, a reinforcement learning-based dynamic multi-objective evolutionary algorithm, called RL-DMOEA, which seamlessly integrates reinforcement learning framework and three change response mechanisms, is proposed for solving DMOPs. The proposed algorithm relocates the individuals based on the severity degree of environmental changes, which is estimated through the corresponding changes in the objective space of their decision variables. When identifying different severity degree of environmental changes, the proposed RL-DMOEA approach can learn better evolutionary behaviors from environment information, based on which apply the appropriate response mechanisms. Specifically, these change response mechanisms including the knee-based prediction, center-based prediction and indicator-based local search, are devised to promote both convergence and diversity of the algorithm under different severity of environmental changes. To verify this idea, the proposed RL-DMOEA is evaluated on CEC 2015 test problems involving various problem characteristics. Empirical studies on chosen state-of-the-art designs validate that the proposed RL-DMOEA is effective in addressing the DMOPs.
    Keywords: Dynamic multi-objective optimization | severity degree | reinforcement learning | prediction


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 44
    حجم فایل: 669 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi