دانلود مقاله انگلیسی رایگان:تجزیه و تحلیل تصمیم گیری و یادگیری تقویت در تصمیم گیری جراحی - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Decision analysis and reinforcement learning in surgical decision-making Decision analysis and reinforcement learning in surgical decision-making
    Decision analysis and reinforcement learning in surgical decision-making

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Decision analysis and reinforcement learning in surgical decision-making


    ترجمه فارسی عنوان مقاله:

    تجزیه و تحلیل تصمیم گیری و یادگیری تقویت در تصمیم گیری جراحی


    منبع:

    Sciencedirect - Elsevier - Surgery, 168 (2020) 253-266. doi:10.1016/j.surg.2020.04.049


    نویسنده:

    Tyler J. Loftus, MDa, Amanda C. Filiberto, MDa, Yanjun Li, MSb, Jeremy Balch, MDa, Allyson C. Cook, MDc, Patrick J. Tighe, MDd, Philip A. Efron, MDa, Gilbert R. Upchurch Jr., MDa, Parisa Rashidi, PhDe,f, Xiaolin Li, PhDb, Azra Bihorac, MDc,f,*


    چکیده انگلیسی:

    Background: Surgical patients incur preventable harm from cognitive and judgment errors made under time constraints and uncertainty regarding patients’ diagnoses and predicted response to treatment. Decision analysis and techniques of reinforcement learning theoretically can mitigate these challenges but are poorly understood and rarely used clinically. This review seeks to promote an understanding of decision analysis and reinforcement learning by describing their use in the context of surgical decisionmaking. Methods: Cochrane, EMBASE, and PubMed databases were searched from their inception to June 2019. Included were 41 articles about cognitive and diagnostic errors, decision-making, decision analysis, and machine-learning. The articles were assimilated into relevant categories according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines. Results: Requirements for time-consuming manual data entry and crude representations of individual patients and clinical context compromise many traditional decision-support tools. Decision analysis methods for calculating probability thresholds can inform population-based recommendations that jointly consider risks, benefits, costs, and patient values but lack precision for individual patient-centered decisions. Reinforcement learning, a machine-learning method that mimics human learning, can use a large set of patient-specific input data to identify actions yielding the greatest probability of achieving a goal. This methodology follows a sequence of events with uncertain conditions, offering potential advantages for personalized, patient-centered decision-making. Clinical application would require secure integration of multiple data sources and attention to ethical considerations regarding liability for errors and individual patient preferences. Conclusion: Traditional decision-support tools are ill-equipped to accommodate time constraints and uncertainty regarding diagnoses and the predicted response to treatment, both of which often impair surgical decision-making. Decision analysis and reinforcement learning have the potential to play complementary roles in delivering high-value surgical care through sound judgment and optimal decision- making.


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 14
    حجم فایل: 2649 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi