سال انتشار:
2020
عنوان انگلیسی مقاله:
Path planning for asteroid hopping rovers with pre-trained deep reinforcement learning architectures
ترجمه فارسی عنوان مقاله:
برنامه ریزی مسیر برای گام های مریخ نورد با معماری یادگیری تقویتی عمیق از پیش اموزش دیده
منبع:
Sciencedirect - Elsevier - Acta Astronautica, 171 (2020) 265-279. doi:10.1016/j.actaastro.2020.03.007
نویسنده:
Jianxun Jianga, Xiangyuan Zenga,∗, Davide Guzzettib, Yuyang Youa
چکیده انگلیسی:
Asteroid surface exploration is challenging due to complex terrain topology and irregular gravity field. A hopping
rover is considered as a promising mobility solution to explore the surface of small celestial bodies.
Conventional path planning tasks, such as traversing a given map to reach a known target, may become particularly
challenging for hopping rovers if the terrain displays sufficiently complex 3-D structures. As an alternative
to traditional path-planning approaches, this work explores the possibility of applying deep reinforcement
learning (DRL) to plan the path of a hopping rover across a highly irregular surface. The 3-D terrain of the
asteroid surface is converted into a level matrix, which is used as an input of the reinforcement learning algorithm.
A deep reinforcement learning architecture with good convergence and stability properties is presented to
solve the rover path-planning problem. Numerical simulations are performed to validate the effectiveness and
robustness of the proposed method with applications to two different types of 3-D terrains.
Keywords: Asteroid surface exploration | Hopping rover | Path planning | Deep reinforcement learning
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0