دانلود مقاله انگلیسی رایگان:کنترل بی سیم با استفاده از یادگیری تقویت کننده برای QoE عملی وب - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Wireless control using reinforcement learning for practical web QoE Wireless control using reinforcement learning for practical web QoE
    Wireless control using reinforcement learning for practical web QoE

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Wireless control using reinforcement learning for practical web QoE


    ترجمه فارسی عنوان مقاله:

    کنترل بی سیم با استفاده از یادگیری تقویت کننده برای QoE عملی وب


    منبع:

    Sciencedirect - Elsevier - Computer Communications, 154 (2020) 331-346. doi:10.1016/j.comcom.2020.02.032


    نویسنده:

    Henrique D. Moura ∗, Daniel F. Macedo, Marcos A.M. Vieira


    چکیده انگلیسی:

    Wireless networks show several challenges not found in wired networks, due to the dynamics of data transmission. Besides, home wireless networks are managed by non-technical people, and providers do not implement full management services because of the difficulties of manually managing thousands of devices. Thus, automatic management mechanisms are desirable. However, such control mechanisms are hard to achieve in practice because we do not always have a model of the process to be controlled, or the behavior of the environment is dynamic. Thus, the control must adapt to changing conditions, and it is necessary to identify the quality of the control executed from the perspective of the user of the network service. This article proposes a control loop for transmission power and channel selection, based on Software Defined Networking and Reinforcement Learning (RL), and capable of improving Web Quality of Experience metrics, thus benefiting the user. We evaluate a prototype in which some Access Points are controlled by a single controller or by independent controllers. The control loop uses the predicted Mean Opinion Score (MOS) as a reward, thus the system needs to classify the web traffic. We proposed a semi-supervised learning method to classify the web sites into three classes (light, average and heavy) that groups pages by their complexity, i.e. number and size of page elements. These classes define the MOS predictor used by the control loop. The proposed web site classifier achieves an average score of 87% ± 1%, classifying 500 unlabeled examples with only fifteen known examples, with a sub-second runtime. Further, the RL control loop achieves higher Mean Opinion Score (up to 167% in our best result) than the baselines. The page load time of clients browsing heavy web sites is improved by up to 6.6x.
    Keywords: Wireless network | Software defined network | Reinforcement learning | Q-Learning | Multi-armed bandit | Quality of Experience


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 16
    حجم فایل: 990 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi