سال انتشار:
2020
عنوان انگلیسی مقاله:
A deep reinforcement learning method for managing wind farm uncertainties through energy storage system control and external reserve purchasing
ترجمه فارسی عنوان مقاله:
یک روش یادگیری تقویت عمیق برای مدیریت عدم قطعیت نیروگاه های بادی از طریق کنترل سیستم ذخیره انرژی و خرید ذخیره خارجی
منبع:
Sciencedirect - Elsevier - Electrical Power and Energy Systems, 119 (2020) 105928. doi:10.1016/j.ijepes.2020.105928
نویسنده:
J.J. Yanga,b, M. Yanga,⁎, M.X. Wanga, P.J. Dua, Y.X. Yua
چکیده انگلیسی:
In deregulated environment, the wind power producers (WPPs) will face the challenge of how to increase their
revenues under uncertainties of wind generation and electricity price. This paper proposes a method based on
deep reinforcement learning (DRL) to address this issue. A data-driven controller that directly maps the input
observations, i.e., the forecasted wind generation and electricity price, to the control actions of the wind farm,
i.e., the charge/discharge schedule of the relevant energy storage system (ESS) and the reserve purchase
schedule, is trained according to the method. By the well-trained controller, the influence of the uncertainties of
wind power and electricity price on the revenue can be automatically involved and an expected optimal decision
can be obtained. Furthermore, a targeted DRL algorithm, i.e., the Rainbow algorithm, is implemented to improve
the effectiveness of the controller. Especially, the algorithm can overcome the limitation of the conventional
reinforcement learning algorithms that the input states must be discrete, and thus the validity of the control
strategy can be significantly improved. Simulation results illustrate that the proposed method can effectively
cope with the uncertainties and bring high revenues to the WPPs.
Keywords: Deep reinforcement learning | Energy storage system | Optimal controller | Rainbow | Reserve | Wind power producer
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0