دانلود مقاله انگلیسی رایگان:مطالعه سیستماتیک پاداش  برای یادگیری تقویتی مبتنی بر آزمون ادغام مداوم - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • A systematic study of reward for reinforcement learning based continuous integration testing A systematic study of reward for reinforcement learning based continuous integration testing
    A systematic study of reward for reinforcement learning based continuous integration testing

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    A systematic study of reward for reinforcement learning based continuous integration testing


    ترجمه فارسی عنوان مقاله:

    مطالعه سیستماتیک پاداش برای یادگیری تقویتی مبتنی بر آزمون ادغام مداوم


    منبع:

    Sciencedirect - Elsevier - The Journal of Systems & Software, 170 (2020) 110787. doi:10.1016/j.jss.2020.110787


    نویسنده:

    Yang Yang, Zheng Li ∗, Liuliu He, Ruilian Zhao


    چکیده انگلیسی:

    Continuous integration(CI) testing is characterized by continually changing test cases, limited execution time, and fast feedback, where the classical test prioritization approaches are no longer suitable. Based on the essence of continuous decision mechanism, reinforcement learning(RL) is suggested for prioritizing test cases in CI testing, in which the reward plays a crucial role. In this paper, we conducted a systematic study of the reward function and reward strategy in CI testing. In terms of reward function, the whole historical execution information of test cases is used with the consideration of the failure times and failure distribution. Further considering the validity of historical information, partial historical information is used by proposing a time-window based approach. In terms of reward strategy which means how to reward, three strategies are introduced, i.e., total reward, partial reward, and fuzzy reward. The empirical study is conducted on four industrial-level programs, and the results reveal that using the reward function with historical information improves the Recall by on average 13.21% when compared with existing TF(Test Case Failure) reward function, and the fuzzy reward strategy is more flexible and improve the NAPFD(Normalized Average Percentage of Faults Detected) by on average 3.43% when compared with the other two strategies.
    Keywords: Continuous integration | Test case prioritization | Reinforcement learning | Reward policy


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 16
    حجم فایل: 1244 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi