دانلود مقاله انگلیسی رایگان:استراتژی های دفاعی سایبری و یادگیری ماشینی - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Machine Learning Cyberattack and Defense Strategies Machine Learning Cyberattack and Defense Strategies
    Machine Learning Cyberattack and Defense Strategies

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Machine Learning Cyberattack and Defense Strategies


    ترجمه فارسی عنوان مقاله:

    استراتژی های دفاعی سایبری و یادگیری ماشینی


    منبع:

    Sciencedirect - Elsevier - Computers & Security, 92 (2020) 101738. doi:10.1016/j.cose.2020.101738


    نویسنده:

    John A. Bland a , ∗, Mikel D. Petty a , Tymaine S. Whitaker a , Katia P. Maxwell b , Walter Alan Cantrell


    چکیده انگلیسی:

    Cybersecurity is an increasingly important challenge for computer systems. In this work, cyberattacks were modeled using an extension of the well-known Petri net formalism. That formalism, designated Petri nets with players, strategies, and costs, models the states of the cyberattack and events during the attack as markings and transition firings in the net respectively. The formalism models the attacker and defender as competing players who may observe the marking of a subset of the net and based on the observed marking act by changing the stochastic firing rates of a subset of the transitions in order to achieve their competing goals. Rate changes by the players incur a cost. Using the formalism, nets were constructed to model specific cyberattack patterns (cross-site scripting and spear phishing) documented in the Common Attack Pattern Enumeration and Classification database. The models were validated by a panel of cybersecurity experts in a structured face validation process. Given those validated nets, a reinforcement learning algorithm using an -Greedy policy was implemented and set to the task of learning which actions to take, i.e., which transition rates to change for the dif- ferent observable markings, so as to accomplish the goals of the attacker or defender. Experiments were conducted with a dynamic (learning) attacker against a static (fixed) defender, a static attacker against a dynamic defender, and a dynamic attacker against a dynamic defender. In all cases, the reinforcement learning algorithm was able to improve its performance, in terms of achieving the player’s objective and reducing the cost of doing so, over time. These results demonstrate the potential of formally modeling cyberattacks and of applying reinforcement learning to improving cybersecurity.
    Keywords: Cybersecurity | Modeling | Petri Net | Machine Learning | CAPEC | Reinforcement Learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 23
    حجم فایل: 3336 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi