دانلود مقاله انگلیسی رایگان:سیاست مطلوب برای نگهداری ساختار: یک چارچوب یادگیری تقویتی عمیق - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Optimal policy for structure maintenance: A deep reinforcement learning framework Optimal policy for structure maintenance: A deep reinforcement learning framework
    Optimal policy for structure maintenance: A deep reinforcement learning framework

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Optimal policy for structure maintenance: A deep reinforcement learning framework


    ترجمه فارسی عنوان مقاله:

    سیاست مطلوب برای نگهداری ساختار: یک چارچوب یادگیری تقویتی عمیق


    منبع:

    Sciencedirect - Elsevier - Structural Safety, 83 (2020) 101906. doi:10.1016/j.strusafe.2019.101906


    نویسنده:

    Shiyin Weia,b,c, Yuequan Baoa,b,c, Hui Lia,b,c,⁎


    چکیده انگلیسی:

    The cost-effective management of aged infrastructure is an issue of worldwide concern. Markov decision process (MDP) models have been used in developing structural maintenance policies. Recent advances in the artificial intelligence (AI) community have shown that deep reinforcement learning (DRL) has the potential to solve large MDP optimization tasks. This paper proposes a novel automated DRL framework to obtain an optimized structural maintenance policy. The DRL framework contains a decision maker (AI agent) and the structure that needs to be maintained (AI task environment). The agent outputs maintenance policies and chooses maintenance actions, and the task environment determines the state transition of the structure and returns rewards to the agent under given maintenance actions. The advantages of the DRL framework include: (1) a deep neural network (DNN) is employed to learn the state-action Q value (defined as the predicted discounted expectation of the return for consequences under a given state-action pair), either based on simulations or historical data, and the policy is then obtained from the Q value; (2) optimization of the learning process is sample-based so that it can learn directly from real historical data collected from multiple bridges (i.e., big data from a large number of bridges); and (3) a general framework is used for different structure maintenance tasks with minimal changes to the neural network architecture. Case studies for a simple bridge deck with seven components and a long-span cable-stayed bridge with 263 components are performed to demonstrate the proposed procedure. The results show that the DRL is efficient at finding the optimal policy for maintenance tasks for both simple and complex structures.
    Keywords: Bridge maintenance policy | Deep reinforcement learning (DRL) | Markov decision process (MDP) | Deep Q-network (DQN) | Convolutional neural network (CNN)


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    حجم فایل: 3351 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi