دانلود مقاله انگلیسی رایگان:یادگیری تقویتی عمیق برای کنترل سیگنال ترافیک تحت اختلالات: یک مطالعه موردی در شهر سان وی ، مالزی - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Deep reinforcement learning for traffic signal control under disturbances: A case study on Sunway city, Malaysia Deep reinforcement learning for traffic signal control under disturbances: A case study on Sunway city, Malaysia
    Deep reinforcement learning for traffic signal control under disturbances: A case study on Sunway city, Malaysia

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Deep reinforcement learning for traffic signal control under disturbances: A case study on Sunway city, Malaysia


    ترجمه فارسی عنوان مقاله:

    یادگیری تقویتی عمیق برای کنترل سیگنال ترافیک تحت اختلالات: یک مطالعه موردی در شهر سان وی ، مالزی


    منبع:

    Sciencedirect - Elsevier - Future Generation Computer Systems, 109 (2020) 431-445. doi:10.1016/j.future.2020.03.065


    نویسنده:

    Faizan Rasheed, Kok-Lim Alvin Yau ∗, Yeh-Ching Low


    چکیده انگلیسی:

    In most urban areas, traffic congestion is a vexing, complex and growing issue day by day. Reinforcement learning (RL) enables a single decision maker (or an agent) to learn and make optimal actions in an independent manner, while multi-agent reinforcement learning (MARL) enables multiple agents to exchange knowledge, learn, and make optimal joint actions in a collaborative manner. The integration of the newly emerging deep learning and the traditional RL approach has created an advanced technique called deep Q-network (DQN) that has shown promising results in solving high-dimensional and complex problems, including traffic congestion. In this paper, DQN is embedded in traffic signal control to solve traffic congestion issue, which has been plagued with the curse of dimensionality whereby the representation of the operating environment can be highly dimensional and complex when the traditional RL approach is used. Most importantly, this paper proposes multiagent DQN (MADQN) and investigates its use to further address the curse of dimensionality under traffic network scenarios with high traffic volume and disturbances. To investigate the effectiveness of our proposed scheme, a case study based on an urban area, namely Sunway city in Malaysia, is conducted. We evaluate our scheme via simulation using a traffic network simulator called simulation of urban mobility (SUMO) and a simulation tool called MATLAB. Simulation results show that our proposed scheme reduces the total travel time of the vehicles.
    Keywords: Reinforcement learning | Deep reinforcement learning | Multi-agent reinforcement learning | Deep Q-network | Multi-agent deep Q-network | Traffic signal control


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 15
    حجم فایل: 2893 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi