دانلود مقاله انگلیسی رایگان:کنترل نظارت یادگیری تقویتی مبتنی بر پرسپترون چند لایه  بر روی سیستم های انرژی با استفاده از سیستم تأمین بخار هسته ای - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system
    Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system


    ترجمه فارسی عنوان مقاله:

    کنترل نظارت یادگیری تقویتی مبتنی بر پرسپترون چند لایه بر روی سیستم های انرژی با استفاده از سیستم تأمین بخار هسته ای


    منبع:

    Sciencedirect - Elsevier - Applied Energy, 259 (2020) 114193. doi:10.1016/j.apenergy.2019.114193


    نویسنده:

    Zhe Donga,b,⁎, Xiaojin Huanga, Yujie Donga, Zuoyi Zhanga


    چکیده انگلیسی:

    Energy system optimization is important in strengthening stability, reliability and economy, which is usually given by static linear or nonlinear programming. However, the challenge faced in real-life currently is how to give the optimization by taking naturally existed energy system dynamics into account. To face this challenge, a multi-layer perception (MLP) based reinforcement learning control (RLC) method is proposed for the nonlinear dissipative system coupled by an arbitrary energy system and its local controllers, which can be able to optimize a given performance index dynamically and effectively without the accurate knowledge of system dynamics. This MLP-based RLC is composed of a MLP-based state-observer and an approximated optimal controller. The MLP-based state-observer is given for identification, which converges to a bounded neighborhood of the system dynamics asymptotically. The approximated optimal controller is determined by solving an algebraic Riccati equation with parameters given by the MLP-based state-observer. Based on Lyapunov direct method, it is further proven that the closed-loop is uniformly ultimately bounded stable. Finally, this newly-built MLP-based RLC is applied to the supervisory optimization of thermal power response for a nuclear steam supply system, and simulation results show not only the satisfactory performance but also the influences from the controller parameters to closed-loop responses.
    Keywords: Energy system optimization | Reinforcement learning control | Neural network


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 12
    حجم فایل: 957 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi