دانلود مقاله انگلیسی رایگان:معرفی یادگیری تقویتی به فرآیند طراحی سیستم انرژی - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Introducing reinforcement learning to the energy system design process Introducing reinforcement learning to the energy system design process
    Introducing reinforcement learning to the energy system design process

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Introducing reinforcement learning to the energy system design process


    ترجمه فارسی عنوان مقاله:

    معرفی یادگیری تقویتی به فرآیند طراحی سیستم انرژی


    منبع:

    Sciencedirect - Elsevier - Applied Energy, 262 (2020) 114580. doi:10.1016/j.apenergy.2020.114580


    نویسنده:

    A.T.D. Pereraa,b,⁎, P.U. Wickramasinghec, Vahid M. Nikd,e,f, Jean-Louis Scartezzinia


    چکیده انگلیسی:

    Design optimization of distributed energy systems has become an interest of a wider group of researchers due the capability of these systems to integrate non-dispatchable renewable energy technologies such as solar PV and wind. White box models, using linear and mixed integer linear programing techniques, are often used in their design. However, the increased complexity of energy flow (especially due to cyber-physical interactions) and uncertainties challenge the application of white box models. This is where data driven methodologies become effective, as they demonstrate higher flexibility to adapt to different environments, which enables their use for energy planning at regional and national scale. This study introduces a data driven approach based on reinforcement learning to design distributed energy systems. Two different neural network architectures are used in this work, i.e. a fully connected neural network and a convolutional neural network (CNN). The novel approach introduced is benchmarked using a grey box model based on fuzzy logic. The grey box model showed a better performance when optimizing simplified energy systems, however it fails to handle complex energy flows within the energy system. Reinforcement learning based on fully connected architecture outperformed the grey box model by improving the objective function values by 60%. Reinforcement learning based on CNN improved the objective function values further (by up to 20% when compared to a fully connected architecture). The results reveal that data-driven models are capable to conduct design optimization of complex energy systems. This opens a new pathway in designing distributed energy systems.
    Keywords: Distributed energy systems | Energy hubs | Reinforcement learning | Optimization | Data driven models | Machine learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 14
    حجم فایل: 3600 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi