دانلود مقاله انگلیسی رایگان:طرح کنترل بهینه محدود مبتنی بر یادگیری تقویتی عمیق ایمن برای شبکه های توزیع فعال - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks
    Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks


    ترجمه فارسی عنوان مقاله:

    طرح کنترل بهینه محدود مبتنی بر یادگیری تقویتی عمیق ایمن برای شبکه های توزیع فعال


    منبع:

    Sciencedirect - Elsevier - Applied Energy, 264 (2020) 114772. doi:10.1016/j.apenergy.2020.114772


    نویسنده:

    Peng Koua,⁎, Deliang Lianga, Chen Wanga, Zihao Wub, Lin Gaoa


    چکیده انگلیسی:

    Reinforcement learning-based schemes are being recently applied for model-free voltage control in active distribution networks. However, existing reinforcement learning methods face challenges when it comes to continuous state and action spaces problems or problems with operation constraints. To address these limitations, this paper proposes an optimal voltage control scheme based on the safe deep reinforcement learning. In this scheme, the optimal voltage control problem is formulated as a constrained Markov decision process, in which both state and action spaces are continuous. To solve this problem efficiently, the deep deterministic policy gradient algorithm is utilized to learn the reactive power control policies, which determine the optimal control actions from the states. In contrast to existing reinforcement learning methods, deep deterministic policy gradient is naturally capable of addressing control problems with continuous state and action spaces. This is due to the utilization of deep neural networks to approximate both value function and policy. In addition, in order to handle the operation constraints in active distribution networks, a safe exploration approach is proposed to form a safety layer, which is composed directly on top the deep deterministic policy gradient actor network. This safety layer predicts the change in the constrained states and prevents the violation of active distribution net works operation constraints. Numerical simulations on modified IEEE test systems demonstrate that the proposed scheme successfully maintains all bus voltage within the allowed range, and reduces the system loss by 15% compared to the no control case.
    Keywords: Active distribution network | Constraint satisfaction | Deep deterministic policy gradient | Optimal voltage control | Smart transformer


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 14
    حجم فایل: 4187 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi