دانلود مقاله انگلیسی رایگان:یادگیری تقویتی مبتنی بر  معماری هوشمند مدیریت انرژی برای ماشین آلات ساختمانی ترکیبی - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery
    Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery


    ترجمه فارسی عنوان مقاله:

    یادگیری تقویتی مبتنی بر معماری هوشمند مدیریت انرژی برای ماشین آلات ساختمانی ترکیبی


    منبع:

    Sciencedirect - Elsevier - Applied Energy, 275 (2020) 115401. doi:10.1016/j.apenergy.2020.115401


    نویسنده:

    Wei Zhanga,⁎, Jixin Wanga,⁎, Yong Liub, Guangzong Gaoa, Siwen Liangb, Hongfeng Maa


    چکیده انگلیسی:

    Power allocation is of crucial significance to energy management system in the hybrid construction machinery (HCM). Most of the existing HCM energy management strategies are only formulated based on the predefined rules, which causes the system unable to adapt to the changeable and complicated working conditions, thus seriously limiting the energy saving potential of hybrid technology. In this paper, we build a reinforcement learning-based intelligent energy management architecture for HCM. Given the working conditions and operating characteristics of HCM, a Q-function updating method combining direct learning and indirect learning is proposed to enhance the performance and practicability of reinforcement learning. A virtual world model (VWM) is introduced to approximate the real-world environment and facilitate the identification of data-driven environment, so as to enhance the real-time performance and adaptability of the architecture. Based on the characteristics of HCM working conditions, the load cycle is subdivided, and the stationary Markov chain is employed to yield real-time transfer probability matrices of required power to accelerate the updating of the environment model. An HCM experiment platform is built, in which the typical signal of working condition is sampled for simulation. The results indicate that DYNA-Q based architecture outperforms Q-learning and rulebased strategy (RBS) in terms of adaptivity, real-time performance and optimality. The results also demonstrate that with the proposed architecture, the working condition of internal combustion engine (ICE) and the chargedischarge of ultracapacitor are more rational and efficient.
    Keywords: Hybrid construction machinery | Energy management | Reinforcement learning | Dyna-Q learning | Virtual world model


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    حجم فایل: 12926 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi