سال انتشار:
2020
عنوان انگلیسی مقاله:
Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle
ترجمه فارسی عنوان مقاله:
استراتژی مدیریت انرژی مبتنی بر یادگیری تقویتی عمیق قانون برای خودروی الکتریکی هیبریدی تقسیم برق
منبع:
Sciencedirect - Elsevier - Energy, 197 (2020) 117297. doi:10.1016/j.energy.2020.117297
نویسنده:
Renzong Lian a, Jiankun Peng b, *, Yuankai Wu c, **, Huachun Tan b, Hailong Zhang b
چکیده انگلیسی:
The optimization and training processes of deep reinforcement learning (DRL) based energy management
strategy (EMS) can be very slow and resource-intensive. In this paper, an improved energy management
framework that embeds expert knowledge into deep deterministic policy gradient (DDPG) is
proposed. Incorporated with the battery characteristics and the optimal brake specific fuel consumption
(BSFC) curve of hybrid electric vehicles (HEVs), we are committed to solving the optimization problem of
multi-objective energy management with a large space of control variables. By incorporating this prior
knowledge, the proposed framework not only accelerates the learning process, but also gets a better fuel
economy, thus making the energy management system relatively stable. The experimental results show
that the proposed EMS outperforms the one without prior knowledge and the other state-of-art deep
reinforcement learning approaches. In addition, the proposed approach can be easily generalized to other
types of HEV EMSs.
Keywords: Energy management strategy | Hybrid electric vehicle | Expert knowledge | Deep deterministic policy gradient | Continuous action space
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0