دانلود مقاله انگلیسی رایگان:مدیریت انرژی مبتنی بر یادگیری تقویت عمیق برای یک وسیله نقلیه الکتریکی هیبریدی - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Deep reinforcement learning based energy management for a hybrid electric vehicle Deep reinforcement learning based energy management for a hybrid electric vehicle
    Deep reinforcement learning based energy management for a hybrid electric vehicle

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Deep reinforcement learning based energy management for a hybrid electric vehicle


    ترجمه فارسی عنوان مقاله:

    مدیریت انرژی مبتنی بر یادگیری تقویت عمیق برای یک وسیله نقلیه الکتریکی هیبریدی


    منبع:

    Sciencedirect - Elsevier - Energy, 201 (2020) 117591. doi:10.1016/j.energy.2020.117591


    نویسنده:

    Guodong Du a, Yuan Zou a, *, Xudong Zhang a, Teng Liu b, Jinlong Wu a, Dingbo He a


    چکیده انگلیسی:

    This research proposes a reinforcement learning-based algorithm and a deep reinforcement learningbased algorithm for energy management of a series hybrid electric tracked vehicle. Firstly, the powertrain model of the series hybrid electric tracked vehicle (SHETV) is constructed, then the corresponding energy management formulation is established. Subsequently, a new variant of reinforcement learning (RL) method Dyna, namely Dyna-H, is developed by combining the heuristic planning step with the Dyna agent and is applied to energy management control for SHETV. Its rapidity and optimality are validated by comparing with DP and conventional Dyna method. Facing the problem of the “curse of dimensionality” in the reinforcement learning method, a novel deep reinforcement learning algorithm deep Qlearning (DQL) is designed for energy management control, which uses a new optimization method (AMSGrad) to update the weights of the neural network. Then the proposed deep reinforcement learning control system is trained and verified by the realistic driving condition with high-precision, and is compared with the benchmark method DP and the traditional DQL method. Results show that the proposed deep reinforcement learning method realizes faster training speed and lower fuel consumption than traditional DQL policy does, and its fuel economy quite approximates to global optimum. Furthermore, the adaptability of the proposed method is confirmed in another driving schedule.
    Keywords: Hybrid electric tracked vehicle | Energy management | Dyna-H | Deep reinforcement learning | AMSGrad optimizer


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    حجم فایل: 2947 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi