دانلود مقاله انگلیسی رایگان:بهینه سازی تعمیر و نگهداری انتخابی پویا برای سیستم های چند حالته در یک افق محدود: یک رویکرد یادگیری تقویتی عمیق - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach
    Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach


    ترجمه فارسی عنوان مقاله:

    بهینه سازی تعمیر و نگهداری انتخابی پویا برای سیستم های چند حالته در یک افق محدود: یک رویکرد یادگیری تقویتی عمیق


    منبع:

    Sciencedirect - Elsevier - European Journal of Operational Research, 283 (2020) 166-181. doi:10.1016/j.ejor.2019.10.049


    نویسنده:

    Yu Liu a , b , ∗, Yiming Chen a , Tao Jiang a


    چکیده انگلیسی:

    Selective maintenance, which aims to choose a subset of feasible maintenance actions to be performed for a repairable system with limited maintenance resources, has been extensively studied over the past decade. Most of the reported works on selective maintenance have been dedicated to maximizing the success of a single future mission. Cases of multiple consecutive missions, which are oftentimes encoun- tered in engineering practices, have been rarely investigated to date. In this paper, a new selective main- tenance optimization for multi-state systems that can execute multiple consecutive missions over a finite horizon is developed. The selective maintenance strategy can be dynamically optimized to maximize the expected number of future mission successes whenever the states and effective ages of the components become known at the end of the last mission. The dynamic optimization problem, which accounts for imperfect maintenance, is formulated as a discrete-time finite-horizon Markov decision process with a mixed integer-discrete-continuous state space. Based on the framework of actor-critic algorithms, a cus- tomized deep reinforcement learning method is put forth to overcome the “curse of dimensionality”and mitigate the uncountable state space. In our proposed method, a postprocess is developed for the actor to search the optimal maintenance actions in a large-scale discrete action space, whereas the techniques of the experience replay and the target network are utilized to facilitate the agent training. The perfor- mance of the proposed method is examined by an illustrative example and an engineering example of a coal transportation system.
    Keywords: Maintenance | Dynamic selective maintenance | Deep reinforcement learning | Imperfect maintenance | Multi-state system


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 16
    حجم فایل: 2271 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi