سال انتشار:
2020
عنوان انگلیسی مقاله:
Data-driven reinforcement-learning-based hierarchical energy management strategy for fuel cell/battery/ultracapacitor hybrid electric vehicles
ترجمه فارسی عنوان مقاله:
استراتژی مدیریت سلسله مراتبی مبتنی بر یادگیری تقویتی مبتنی بر داده برای وسایل نقلیه الکتریکی ترکیبی سلول سوختی / باتری / فوق خازن
منبع:
Sciencedirect - Elsevier - Journal of Power Sources, 455 (2020) 227964. doi:10.1016/j.jpowsour.2020.227964
نویسنده:
Haochen Sun a, Zhumu Fu a,b,*, Fazhan Tao a,b,**, Longlong Zhu a, Pengju Si a,b
چکیده انگلیسی:
A reinforcement-learning-based energy management strategy is proposed in this paper for managing energy
system of Fuel Cell Hybrid Electric Vehicles (FCHEV) equipped with three power sources. A hierarchical power
splitting structure is employed to shrink large state-action space based on an adaptive fuzzy filter. Then, the
reinforcement-learning-based algorithm using Equivalent Consumption Minimization Strategy (ECMS) is proposed
for tackling high-dimensional state-action space, and finding a trade-off between global learning and realtime
implementation. The power splitting policy based on experimental data is obtained by using reinforcement
learning algorithm, which allows for many different driving cycles and traffic conditions. The proposed energy
management strategy can achieve low computation cost, optimal fuel cell efficiency and energy consumption
economy. Simulation results confirm that, compared with existing learning algorithms and optimization
methods, the proposed reinforcement-learning-based energy management strategy using ECMS can achieve high
computation efficiency, lower power fluctuation of fuel cell and optimal fuel economy of FCHEV.
Keywords: Fuel cell hybrid electric vehicle | Energy management strategy | Reinforcement learning | Data driven | Hierarchical power splitting
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0