دانلود مقاله انگلیسی رایگان:استفاده از یادگیری تقویتی برای به حداکثر رساندن خود مصرفی مسکونی - نتایج یک آزمون میدانی - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Using reinforcement learning for maximizing residential self-consumption - Results from a field test Using reinforcement learning for maximizing residential self-consumption - Results from a field test
    Using reinforcement learning for maximizing residential self-consumption - Results from a field test

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Using reinforcement learning for maximizing residential self-consumption - Results from a field test


    ترجمه فارسی عنوان مقاله:

    استفاده از یادگیری تقویتی برای به حداکثر رساندن خود مصرفی مسکونی - نتایج یک آزمون میدانی


    منبع:

    Sciencedirect - Elsevier - Energy & Buildings, 207 (2020) 109608. doi:10.1016/j.enbuild.2019.109608


    نویسنده:

    Ana Soares a , b , ∗, Davy Geysen a , b , Fred Spiessens a , b , Dominic Ectors a , b , Oscar De Somer c , Koen Vanthournout


    چکیده انگلیسی:

    This paper presents the results from a real residential field test in which one of the objectives was to maximize the instantaneous self-consumption of the local photovoltaic production. The field test was part of the REnnovates project and was conducted in different phases on houses in several residential districts located in Soesterberg, Heerhugowaard, Woerden and Soest, the Netherlands. To maximize self- consumption, buffered heat pump installations for domestic hot water and stationary residential battery systems were chosen due to their respective thermal and electrical storage capacities. The algorithm used to tackle the associated sequential decision-making problem was model-based reinforcement learning. The proposed algorithm learns the stochastic occupant behavior, uses predictions of local photovoltaic production and considers the dynamics of the system. The results show that this algorithm increased the average self-consumption percentage of the local PV generation (used instantaneously in situ ) on average by 14%, even if only buffered heat pump installations for domestic hot water were used. This increase was achieved without causing any perceived discomfort to the residential end users. The average energy shifted per day from the solar production period to the night by the 2 kW/3.6 kWh batteries was 1.5 kWh. The main contribution of this work was therefore the real field implementation of the proposed algorithm. The results demonstrate that it is possible to improve even further the integration of local production using flexible loads.
    Keywords: Reinforcement learning | Q-Learning | Field test | Solar PV generation | Thermal storage | Thermostatically controlled loads | Electrical storage | Battery | Residential loads


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 10
    حجم فایل: 904 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi