دانلود مقاله انگلیسی رایگان:یادگیری تقویتی بر اساس ابتدای حرکت برای وظایف تماس - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Reinforcement learning based on movement primitives for contact tasks Reinforcement learning based on movement primitives for contact tasks
    Reinforcement learning based on movement primitives for contact tasks

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Reinforcement learning based on movement primitives for contact tasks


    ترجمه فارسی عنوان مقاله:

    یادگیری تقویتی بر اساس ابتدای حرکت برای وظایف تماس


    منبع:

    Sciencedirect - Elsevier - Robotics and Computer Integrated Manufacturing, 62 (2020) 101863. doi:10.1016/j.rcim.2019.101863


    نویسنده:

    Young-Loul Kim, Kuk-Hyun Ahn, Jae-Bok Song⁎


    چکیده انگلیسی:

    Recently, robot learning through deep reinforcement learning has incorporated various robot tasks through deep neural networks, without using specific control or recognition algorithms. However, this learning method is difficult to apply to the contact tasks of a robot, due to the exertion of excessive force from the random search process of reinforcement learning. Therefore, when applying reinforcement learning to contact tasks, solving the contact problem using an existing force controller is necessary. A neural-network-based movement primitive (NNMP) that generates a continuous trajectory which can be transmitted to the force controller and learned through a deep deterministic policy gradient (DDPG) algorithm is proposed for this study. In addition, an imitation learning algorithm suitable for NNMP is proposed such that the trajectories similar to the demonstration trajectory are stably generated. The performance of the proposed algorithms was verified using a square peg-in-hole assembly task with a tolerance of 0.1 mm. The results confirm that the complicated assembly trajectory can be learned stably through NNMP by the proposed imitation learning algorithm, and that the assembly trajectory is improved by learning the proposed NNMP through the DDPG algorithm.
    Keywords: AI-based methods | Force control | Deep Learning in robotics and automation


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 7
    حجم فایل: 1133 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi