دانلود مقاله انگلیسی رایگان:طراحی راه رفتن لغزنده با صرفه جویی در مصرف انرژی و آسیب دیدگی برای یک ربات مار مانند بر اساس یادگیری تقویتی و یادگیری تقویتی معکوس - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning
    Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning


    ترجمه فارسی عنوان مقاله:

    طراحی راه رفتن لغزنده با صرفه جویی در مصرف انرژی و آسیب دیدگی برای یک ربات مار مانند بر اساس یادگیری تقویتی و یادگیری تقویتی معکوس


    منبع:

    Sciencedirect - Elsevier - Neural Networks, 129 (2020) 323-333. doi:10.1016/j.neunet.2020.05.029


    نویسنده:

    Zhenshan Bing a, Christian Lemke b, Long Cheng c,∗, Kai Huang d, Alois Knoll a


    چکیده انگلیسی:

    Similar to real snakes in nature, the flexible trunks of snake-like robots enhance their movement capabilities and adaptabilities in diverse environments. However, this flexibility corresponds to a complex control task involving highly redundant degrees of freedom, where traditional modelbased methods usually fail to propel the robots energy-efficiently and adaptively to unforeseeable joint damage. In this work, we present an approach for designing an energy-efficient and damagerecovery slithering gait for a snake-like robot using the reinforcement learning (RL) algorithm and the inverse reinforcement learning (IRL) algorithm. Specifically, we first present an RL-based controller for generating locomotion gaits at a wide range of velocities, which is trained using the proximal policy optimization (PPO) algorithm. Then, by taking the RL-based controller as an expert and collecting trajectories from it, we train an IRL-based controller using the adversarial inverse reinforcement learning (AIRL) algorithm. For the purpose of comparison, a traditional parameterized gait controller is presented as the baseline and the parameter sets are optimized using the grid search and Bayesian optimization algorithm. Based on the analysis of the simulation results, we first demonstrate that this RL-based controller exhibits very natural and adaptive movements, which are also substantially more energy-efficient than the gaits generated by the parameterized controller. We then demonstrate that the IRL-based controller cannot only exhibit similar performances as the RL-based controller, but can also recover from the unpredictable damage body joints and still outperform the model-based controller, which has an undamaged body, in terms of energy efficiency.Videos can be viewed at https://videoviewsite.wixsite.com/rlsnake.
    Keywords: Snake-like robot | Reinforcement learning | Inverse reinforcement learning | Motion planning | Damage recovery


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 11
    حجم فایل: 1227 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi