سال انتشار:
2020
عنوان انگلیسی مقاله:
Integral reinforcement learning based event-triggered control with input saturation
ترجمه فارسی عنوان مقاله:
کنترل رویداد مبتنی بر یادگیری تقویتی یکپارچه با اشباع ورودی
منبع:
Sciencedirect - Elsevier - Neural Networks, 131 (2020) 144-153. doi:10.1016/j.neunet.2020.07.016
نویسنده:
Shan Xue a, Biao Luo b,c,∗, Derong Liu d
چکیده انگلیسی:
In this paper, a novel integral reinforcement learning (IRL)-based event-triggered adaptive dynamic
programming scheme is developed for input-saturated continuous-time nonlinear systems. By using
the IRL technique, the learning system does not require the knowledge of the drift dynamics. Then, a
single critic neural network is designed to approximate the unknown value function and its learning is
not subjected to the requirement of an initial admissible control. In order to reduce computational and
communication costs, the event-triggered control law is designed. The triggering threshold is given to
guarantee the asymptotic stability of the control system. Two examples are employed in the simulation
studies, and the results verify the effectiveness of the developed IRL-based event-triggered control
method.
Keywords: Adaptive dynamic programming | Integral reinforcement learning | Neural networks | Event-triggered control | Input saturation
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0