دانلود مقاله انگلیسی رایگان:مقایسه استراتژی های یادگیری تقویتی عمیق انتها به انتها و ترکیبی برای کنترل ربات های موازی کابل محور - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Comparison of end-to-end and hybrid deep reinforcement learning strategies for controlling cable-driven parallel robots Comparison of end-to-end and hybrid deep reinforcement learning strategies for controlling cable-driven parallel robots
    Comparison of end-to-end and hybrid deep reinforcement learning strategies for controlling cable-driven parallel robots

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Comparison of end-to-end and hybrid deep reinforcement learning strategies for controlling cable-driven parallel robots


    ترجمه فارسی عنوان مقاله:

    مقایسه استراتژی های یادگیری تقویتی عمیق انتها به انتها و ترکیبی برای کنترل ربات های موازی کابل محور


    منبع:

    Sciencedirect - Elsevier - Neurocomputing, 377 (2020) 73-84. doi:10.1016/j.neucom.2019.10.020


    نویسنده:

    Hao Xiong, Tianqi Ma, Lin Zhang, Xiumin Diao


    چکیده انگلیسی:

    Deep reinforcement learning (DRL) has been proven effective in learning policies of high-dimensional states and actions. Recently, a variety of robot manipulation tasks have been accomplished using end-to- end DRL strategies. An end-to-end DRL strategy accomplishes a robot manipulation task as a black box. On the other hand, a robot manipulation task can be divided into multiple subtasks and accomplished by non-learning-based approaches. A hybrid DRL strategy integrates DRL with non-learning-based ap- proaches. The hybrid DRL strategy accomplishes some subtasks of a robot manipulation task by DRL and the rest subtasks by non-learning-based approaches. However, the effects of integrating DRL with non- learning-based approaches on the learning speed and the robustness of DRL to model uncertainties have not been discussed. In this study, an end-to-end DRL strategy and a hybrid DRL strategy are developed and compared in controlling a cable-driven parallel robot. This study shows that, by integrating DRL with non-learning-based approaches, the hybrid DRL strategy learns faster and is more robust to model un- certainties than the end-to-end DRL strategy. This study demonstrates that, by taking advantages of both learning and non-learning-based approaches, the hybrid DRL strategy provides an alternative to accom- plish a robot manipulation task.
    Keywords: Deep reinforcement learning | End-to-end DRL strategy | Hybrid DRL strategy | Deep deterministic policy gradient | Cable-driven parallel robot


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 12
    حجم فایل: 2228 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi