دانلود مقاله انگلیسی رایگان:یک معماری شناختی توسعه ای خود سازمان دهی شده با یادگیری تقویتی تعاملی - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • A self-organizing developmental cognitive architecture with interactive reinforcement learning A self-organizing developmental cognitive architecture with interactive reinforcement learning
    A self-organizing developmental cognitive architecture with interactive reinforcement learning

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    A self-organizing developmental cognitive architecture with interactive reinforcement learning


    ترجمه فارسی عنوان مقاله:

    یک معماری شناختی توسعه ای خود سازمان دهی شده با یادگیری تقویتی تعاملی


    منبع:

    Sciencedirect - Elsevier - Neurocomputing, 377 (2020) 269-285. doi:10.1016/j.neucom.2019.07.109


    نویسنده:

    Ke Huang, Xin Ma ∗, Rui Song, Xuewen Rong, Xincheng Tian, Yibin Li


    چکیده انگلیسی:

    Developmental cognitive systems can endow robots with the abilities to incrementally learn knowledge and autonomously adapt to complex environments. Conventional cognitive methods often acquire knowl- edge through passive perception, such as observing and listening. However, this learning way may gener- ate incorrect representations inevitably and cannot correct them online without any feedback. To tackle this problem, we propose a biologically-inspired hierarchical cognitive system called Self-Organizing De- velopmental Cognitive Architecture with Interactive Reinforcement Learning (SODCA-IRL). The architec- ture introduces interactive reinforcement learning into hierarchical self-organizing incremental neural networks to simultaneously learn object concepts and fine-tune the learned knowledge by interacting with humans. In order to realize the integration, we equip individual neural networks with a memory model, which is designed as an exponential function controlled by two forgetting factors to simulate the consolidation and forgetting processes of humans. Besides, an interactive reinforcement strategy is designed to provide appropriate rewards and execute mistake correction. The feedback acts on the for- getting factors to reinforce or weaken the memory of neurons. Therefore, correct knowledge is preserved while incorrect representations are forgotten. Experimental results show that the proposed method can make effective use of the feedback from humans to improve the learning effectiveness significantly and reduce the model redundancy.
    Keywords: Cognitive development | Online learning | Self-organizing neural network | Object recognition | Interactive reinforcement learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 17
    حجم فایل: 5294 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi