سال انتشار:
2020
عنوان انگلیسی مقاله:
Internal reinforcement adaptive dynamic programming for optimal containment control of unknown continuous-time multi-agent systems
ترجمه فارسی عنوان مقاله:
تقویت داخلی برنامه نویسی پویا تطبیقی برای کنترل بهینه مهار سیستم های ناشناخته چند عامل با زمان پیوسته
منبع:
Sciencedirect - Elsevier - Neurocomputing, 413 (2020) 85-95. doi:10.1016/j.neucom.2020.06.106
نویسنده:
Jiefu Zhang a, Zhinan Peng a, Jiangping Hua,⇑, Yiyi Zhao b, Rui Luo a, Bijoy Kumar Ghosh a,c
چکیده انگلیسی:
In this paper, a novel control scheme is developed to solve an optimal containment control problem of
unknown continuous-time multi-agent systems. Different from traditional adaptive dynamic programming
(ADP) algorithms, this paper proposes an internal reinforcement ADP algorithm (IR-ADP), in which
the internal reinforcement signals are added in order to facilitate the learning process. Then a distributed
containment control law is designed for each agent with the internal reinforcement signal. The convergence
of this IR-ADP algorithm and the stability of the closed-loop multi-agent system are analyzed theoretically.
For the implementation of the optimal controllers, three neural networks (NNs), namely
internal reinforcement NNs, critic NNs and actor NNs, are utilized to approximate the internal reinforcement
signals, the performance indices and optimal control laws, respectively. Finally, some simulation
results are provided to demonstrate the effectiveness of the proposed algorithm.
Keywords: Optimal containment control | Multi-agent system | Internal reinforcement learning | Adaptive dynamic programming | Neural network
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0