دانلود مقاله انگلیسی رایگان:MemoryPath: یک چارچوب یادگیری تقویتی عمیق برای ترکیب مولفه حافظه در استدلال نمودار دانش - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • MemoryPath: A Deep Reinforcement Learning Framework for Incorporating Memory Component into Knowledge Graph Reasoning MemoryPath: A Deep Reinforcement Learning Framework for Incorporating Memory Component into Knowledge Graph Reasoning
    MemoryPath: A Deep Reinforcement Learning Framework for Incorporating Memory Component into Knowledge Graph Reasoning

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    MemoryPath: A Deep Reinforcement Learning Framework for Incorporating Memory Component into Knowledge Graph Reasoning


    ترجمه فارسی عنوان مقاله:

    MemoryPath: یک چارچوب یادگیری تقویتی عمیق برای ترکیب مولفه حافظه در استدلال نمودار دانش


    منبع:

    Sciencedirect - Elsevier - Neurocomputing, Journal Pre-proof. doi:10.1016/j.neucom.2020.08.032


    نویسنده:

    Shuangyin Li, Heng Wang, Rong Pan, Mingzhi Mao


    چکیده انگلیسی:

    Knowledge Graph (KG) is identified as a major area in artificial intelligence, which is used for many real-world applications. The task of knowledge graph reasoning has been widely used and proven to be effective, which aims to find these reasonable paths for various relations to solve the issue of incompleteness in KGs. However, many previous works on KG reasoning, such as path-based or rein- forcement learning-based methods, are too reliant on the pre-training, where the paths from the head entity and the target entity must be given to pre-train the model, which would easily lead the model to overfit on the given paths seen in the pre-training. To address this issue, we propose a novel reasoning model named MemoryPath with a deep reinforcement learning framework, which incorporates Long Short Term Memory(LSTM) and graph attention mechanism to form the memory component. The well-designed memory component can get rid of the pre-training so that the model doesn’t depend on the given target entity for training. A tailored mechanism of reinforcement learning is presented in this proposed deep reinforcement framework to optimize the training procedure, where two metrics, Mean Selection Rate (MSR) and Mean Alternative Rate (MAR), are defined to quantitatively mea- sure the complexities of the query relations. Meanwhile, three different training mechanisms, Action Dropout, Reward Shaping and Force Forward, are proposed to optimize the training process of the proposed MemoryPath. The proposed MemoryPath is validated on two datasets from FB15K-237 and NELL-995 on different tasks including fact prediction, link prediction and success rate in finding paths. The experimental results demonstrate that the tailored mechanism of reinforcement learning make the MemoryPath achieves state-of-the-art performance comparing with the other models. Also, the qualitative analysis indicates that the MemoryPath can store the learning process and automati- cally find the promising paths for a reasoning task during the training, and shows the effectiveness of the memory component.
    Keywords: Knowledge Graph Reasoning | Memory Component | Deep Reinforcement Learning | Link Prediction | Attentional Path | Force Forward


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 17
    حجم فایل: 1024 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi