دانلود مقاله انگلیسی رایگان:رزولوشن برخورد خودکار برای طراحی فولاد تقویت کننده در قاب های بتنی از طریق یادگیری Q و مدل سازی اطلاعات ساخت - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Automated clash resolution for reinforcement steel design in concrete frames via Q-learning and Building Information Modeling Automated clash resolution for reinforcement steel design in concrete frames via Q-learning and Building Information Modeling
    Automated clash resolution for reinforcement steel design in concrete frames via Q-learning and Building Information Modeling

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Automated clash resolution for reinforcement steel design in concrete frames via Q-learning and Building Information Modeling


    ترجمه فارسی عنوان مقاله:

    رزولوشن برخورد خودکار برای طراحی فولاد تقویت کننده در قاب های بتنی از طریق یادگیری Q و مدل سازی اطلاعات ساخت


    منبع:

    Sciencedirect - Elsevier - Automation in Construction, 112 (2020) 103062. doi:10.1016/j.autcon.2019.103062


    نویسنده:

    Jiepeng Liua,c, Pengkun Liua,2,∗, Liang Fengb,1,∗∗, Wenbo Wub, Dongsheng Lia, Y. Frank Chena


    چکیده انگلیسی:

    The design of reinforcing steel bars (rebars) is critical to reinforced concrete (RC) structures. Generally, a good number of rebars are required by a design code, particularly at member connections. As such, rebar clashes (i.e., collisions and congestions) would be inevitable. It would be impractical, labor-intensive, and error-prone to avoid all possible clashes manually or even using standard design software. The building information modeling (BIM) technology has been utilized by the present architecture, engineering, and construction (ACE) industry for clash-free rebar designs. However, most existing BIM-based approaches offer the clash resolution strategy for moving components with an optimization algorithm, and are only applicable to the RC structures with regular shapes. In particular, the optimized path of rebars cannot be adjusted to avoid the obstacles, thus limiting the practical applications. Furthermore, most existing studies lack the learning from design code and constructibility constraints to realize automatic and intelligent arrangement and adjustment of rebars for avoiding the obstacles encountered in complex RC joints and frame structures. Considering these shortcomings, the authors have recently proposed an immediate reward-based multi-agent reinforcement learning (MARL) system with BIM, towards automatic clash-free rebar designs of RC joints without clashes. However, as the immediate reward is required in the MARL system for guiding the learning of a rebar design, it will not succeed in clash-free rebar designs of complex RC structures where immediate reward is often unavailable. In this study, this study further extends the previous work with Q-learning (a model-free reinforcement learning algorithm) for more realistic path planning considering both immediate and delayed rewards in clash-free rebar designs for real-world RC structures. In particular, the rebar design problem is treated as a path-planning problem of multi-agent system, where each rebar is deemed as an intelligence reinforcement learning agent. Next, by employing the Q-learning as the reinforcement learning engine, the particular form of state, action, and immediate and delayed rewards for the reinforcement MARL for automatic rebar designs considering more actual constructible constraints and design codes can be developed. Comprehensive experiments on three typical beam-column joints and a two-story RC building frame were conducted to evaluate the efficiency of the proposed method. The study results of paths of rebar designs, success rates, and average time confirm that the proposed framework with MARL and BIM is effective and efficient.
    Keywords: Building Information Modeling | Reinforcement learning | Multi-agent | Q-learning | Rebar design | Clash resolution | Reinforced concrete frame


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 16
    حجم فایل: 5586 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi