دانلود مقاله انگلیسی رایگان:رویکرد یادگیری تقویتی برای کنترل بهینه چندین لوکوموتیو الکتریکی در قطار باری سنگین حمل و نقل  : معماری شبکه دو سوئیچ- Q - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Reinforcement learning approach for optimal control of multiple electric locomotives in a heavy-haul freight train: A Double-Switch-Q-network architecture Reinforcement learning approach for optimal control of multiple electric locomotives in a heavy-haul freight train: A Double-Switch-Q-network architecture
    Reinforcement learning approach for optimal control of multiple electric locomotives in a heavy-haul freight train: A Double-Switch-Q-network architecture

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Reinforcement learning approach for optimal control of multiple electric locomotives in a heavy-haul freight train: A Double-Switch-Q-network architecture


    ترجمه فارسی عنوان مقاله:

    رویکرد یادگیری تقویتی برای کنترل بهینه چندین لوکوموتیو الکتریکی در قطار باری سنگین حمل و نقل : معماری شبکه دو سوئیچ- Q


    منبع:

    Sciencedirect - Elsevier - Knowledge-Based Systems, 190 (2020) 105173. doi:10.1016/j.knosys.2019.105173


    نویسنده:

    Huiyue Tang a,c, Yuan Wangb,c,∗, Xiang Liu c, Xiaoyun Feng a


    چکیده انگلیسی:

    Electric locomotives provide high tractive power for fast acceleration of heavy-haul freight trains, and significantly reduce the energy consumption with regenerative braking. This paper proposes a reinforcement learning (RL) approach for the optimal control of multiple electric locomotives in a heavy-haul freight train, without using the prior knowledge of train dynamics and the predesigned velocity profile. The optimization takes the velocity, energy consumption and coupler force as objectives, considering the constraints on locomotive notches and their change rates, speed restrictions, traction and regenerative braking. Besides, since the problem in this paper has continuous state space and large action space, and the adjacent actions’ influences on states share similarities, we propose a Double-Switch Q-network (DSQ-network) architecture to achieve fast approximation of the action-value function, which enhances the parameter sharing of states and actions, and denoises the action-value function. In the numerical experiments, we test DSQ-network in 28 cases using the data of China Railways HXD3B electric locomotive. The results indicate that compared with tablelookup Q-learning, DSQ-network converges much faster and uses less storage space in the optimal control of electric locomotives. Besides, we analyze 1)the influences of ramps and speed restrictions on the optimal policy, and 2)the inter-dependent and inter-conditioned relationships between multiple optimization objectives. Finally, the factors that influence the convergence rate and solution accuracy of DSQ-network are discussed based on the visualization of the high-dimensional value functions.
    Keywords: Reinforcement learning | Double-Switch Q-network | Optimal control | Electric locomotive | Heavy-haul freight train


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 17
    حجم فایل: 4095 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi