دانلود مقاله انگلیسی رایگان:یک رویکرد یادگیری تقویت برای بهینه سازی  مسائل فروشنده دوره گرد چند گانه از طریق گراف - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs
    A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs


    ترجمه فارسی عنوان مقاله:

    یک رویکرد یادگیری تقویت برای بهینه سازی مسائل فروشنده دوره گرد چند گانه از طریق گراف


    منبع:

    Sciencedirect - Elsevier - Knowledge-Based Systems, 204 (2020) 106244. doi:10.1016/j.knosys.2020.106244


    نویسنده:

    Yujiao Hua,b,∗, Yuan Yao a, Wee Sun Lee


    چکیده انگلیسی:

    This paper proposes a learning-based approach to optimize the multiple traveling salesman problem (MTSP), which is one classic representative of cooperative combinatorial optimization problems. The MTSP is interesting to study, because the problem arises from numerous practical applications and efficient approaches to optimize the MTSP can potentially be adapted for other cooperative optimization problems. However, the MTSP is rarely researched in the deep learning domain because of certain difficulties, including the huge search space, the lack of training data that is labeled with optimal solutions and the lack of architectures that extract interactive behaviors among agents. This paper constructs an architecture consisting of a shared graph neural network and distributed policy networks to learn a common policy representation to produce near-optimal solutions for the MTSP. We use a reinforcement learning approach to train the model, overcoming the requirement data labeled with ground truth. We use a two-stage approach, where reinforcement learning is used to learn an allocation of agents to vertices, and a regular optimization method is used to solve the single-agent traveling salesman problems associated with each agent. We introduce a S-samples batch training method to reduce the variance of the gradient, improving the performance significantly. Experiments demonstrate our approach successfully learns a strong policy representation that outperforms integer linear programming and heuristic algorithms, especially on large scale problems.
    Keywords: Multi-agent reinforcement learning | Combinatorial optimization problems | Multiple traveling salesman problems | Graph neural networks | Policy networks


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 14
    حجم فایل: 3260 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi