دانلود مقاله انگلیسی رایگان:الگوریتم های ابتکاری مبتنی بر یادگیری تقویتی عمیق برای بهینه سازی باینری بدون محدودیت درجه دوم - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Heuristic algorithms based on deep reinforcement learning for quadratic unconstrained binary optimization Heuristic algorithms based on deep reinforcement learning for quadratic unconstrained binary optimization
    Heuristic algorithms based on deep reinforcement learning for quadratic unconstrained binary optimization

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Heuristic algorithms based on deep reinforcement learning for quadratic unconstrained binary optimization


    ترجمه فارسی عنوان مقاله:

    الگوریتم های ابتکاری مبتنی بر یادگیری تقویتی عمیق برای بهینه سازی باینری بدون محدودیت درجه دوم


    منبع:

    Sciencedirect - Elsevier - Knowledge-Based Systems, 207 (2020) 106366. doi:10.1016/j.knosys.2020.106366


    نویسنده:

    Ming Chen, Yuning Chen ∗, Yonghao Du, Luona Wei, Yingwu Chen


    چکیده انگلیسی:

    The unconstrained binary quadratic programming (UBQP) problem is a difficult combinatorial optimization problem that has been intensively studied in the past decades. Due to its NP-hardness, many heuristic algorithms have been developed for the solution of the UBQP. These algorithms are usually problem-tailored, which lack generality and scalability. To address these issues, a heuristic algorithm based on deep reinforcement learning (DRLH) is proposed in this paper. It features in inputting specific features and using a neural network model called NN to guild the selection of variable at each solution construction step. Also, to improve the algorithm speed and efficiency, two algorithm variants named simplified DRLH (DRLS) and DRLS with hill climbing (DRLS-HC) are developed as well. These three algorithms are examined through extensive experiments in comparison with famous heuristic algorithms from the literature. Experimental results show that the DRLH, DRLS, and DRLS-HC outperform their competitors in terms of both solution quality and computational efficiency. Precisely, the DRLH achieves the best-quality results, while DRLS offers a high-quality solution in a very short time. By adding a hill-climbing procedure to DRLS, the resulting DRLS-HC algorithm is able to obtain almost the same quality result as DRLH with however 5 times less computing time on average. We conducted additional experiments on large-scale instances and various data distributions to verify the generality and scalability of the proposed algorithms, and the results on benchmark instances indicate the ability of the algorithms to be applied to practical problems.
    Keywords: Unconstrained binary quadratic | programming | Heuristic algorithm | Deep reinforcement learning | Neural network


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 10
    حجم فایل: 1159 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi