دانلود مقاله انگلیسی رایگان:کاربرد یادگیری تقویتی عمیق برای تشخیص نفوذ برای مسائل تحت نظارت - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Application of deep reinforcement learning to intrusion detection for supervised problems Application of deep reinforcement learning to intrusion detection for supervised problems
    Application of deep reinforcement learning to intrusion detection for supervised problems

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Application of deep reinforcement learning to intrusion detection for supervised problems


    ترجمه فارسی عنوان مقاله:

    کاربرد یادگیری تقویتی عمیق برای تشخیص نفوذ برای مسائل تحت نظارت


    منبع:

    Sciencedirect - Elsevier - Expert Systems With Applications, 141 (2020) 112963. doi:10.1016/j.eswa.2019.112963


    نویسنده:

    Manuel Lopez-Martin


    چکیده انگلیسی:

    The application of new techniques to increase the performance of intrusion detection systems is crucial in modern data networks with a growing threat of cyber-attacks. These attacks impose a greater risk on network services that are increasingly important from a social end economical point of view. In this work we present a novel application of several deep reinforcement learning (DRL) algorithms to intru- sion detection using a labeled dataset. We present how to perform supervised learning based on a DRL framework. The implementation of a reward function aligned with the detection of intrusions is extremely diffi- cult for Intrusion Detection Systems (IDS) since there is no automatic way to identify intrusions. Usually the identification is performed manually and stored in datasets of network features associated with in- trusion events. These datasets are used to train supervised machine learning algorithms for classifying intrusion events. In this paper we apply DRL using two of these datasets: NSL-KDD and AWID datasets. As a novel approach, we have made a conceptual modification of the classic DRL paradigm (based on interaction with a live environment), replacing the environment with a sampling function of recorded training intrusions. This new pseudo-environment, in addition to sampling the training dataset, generates rewards based on detection errors found during training. We present the results of applying our technique to four of the most relevant DRL models: Deep Q- Network (DQN), Double Deep Q-Network (DDQN), Policy Gradient (PG) and Actor-Critic (AC). The best results are obtained for the DDQN algorithm. We show that DRL, with our model and some parameter adjustments, can improve the results of intrusion detection in comparison with current machine learning techniques. Besides, the classifier ob- tained with DRL is faster than alternative models. A comprehensive comparison of the results obtained with other machine learning models is provided for the AWID and NSL-KDD datasets, together with the lessons learned from the application of several design alternatives to the four DRL models.
    Keywords: Intrusion detection | Data networks | Deep reinforcement learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 15
    حجم فایل: 2790 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi