سال انتشار:
2020
عنوان انگلیسی مقاله:
Improving response of wind turbines by pitch angle controller based on gain-scheduled recurrent ANFIS type 2 with passive reinforcement learning
ترجمه فارسی عنوان مقاله:
بهبود پاسخ توربین های بادی توسط کنترل کننده زاویه گام بر اساس ANFIS تکرار شونده نوع 2 با یادگیری تقویتی غیرفعال
منبع:
Sciencedirect - Elsevier - Renewable Energy, 157 (2020) 897-910. doi:10.1016/j.renene.2020.05.060
نویسنده:
Ehsan Hosseini a, Ehsan Aghadavoodi a, **, Luis M. Fernandez Ramírez b, *
چکیده انگلیسی:
In this paper, passive reinforcement learning (RL) solved by particle swarm optimization policy (PSOeP)
is used to handle an adaptive neuro-fuzzy inference system (ANFIS) type-2 structure with unsupervised
clustering for controlling the pitch angle of a real wind turbine (WT). The proposed control scheme is
based on gain-scheduled reinforcement learning recurrent ANFIS type 2 (GS-RL-RANFIST2) pitch angle
controller to maintain the rotor speed at its rated value while smoothing the output power and the
performance of the pitch angle system. The practical application of the proposed controller is evaluated
by using FAST tool for a real 600 kW WT equipped with a synchronous generator with a full-size power
converter (CART3, located at the National Renewable Energy Laboratory, NREL), whose results are
compared with those obtained by a gain corrected proportional integral (GC-PI) controller. The results
demonstrate that the GS-RL-RANFIST2, which sets the nonlinear characteristics of the system automatically
and waves more uncertainties in the windy conditions, allows to increase the energy capture
and smooth the output power fluctuation, and therefore, to improve the control and response of theWT.
Keywords: Pith angle controller | Wind turbine | Gain-scheduled | ANFIS type-2 controller | Reinforcement learning (RL) | Unsupervised clustering
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0