دانلود مقاله انگلیسی رایگان:کنترل سریع ، کارآمد و ایمن بر اساس یادگیری تقویتی برای رانندگی خودمختار - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • Safe, efficient, and comfortable velocity control based on reinforcement learning for autonomous driving Safe, efficient, and comfortable velocity control based on reinforcement learning for autonomous driving
    Safe, efficient, and comfortable velocity control based on reinforcement learning for autonomous driving

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Safe, efficient, and comfortable velocity control based on reinforcement learning for autonomous driving


    ترجمه فارسی عنوان مقاله:

    کنترل سریع ، کارآمد و ایمن بر اساس یادگیری تقویتی برای رانندگی خودمختار


    منبع:

    Sciencedirect - Elsevier - Transportation Research Part C, 117 (2020) 102662. doi:10.1016/j.trc.2020.102662


    نویسنده:

    Meixin Zhua,b, Yinhai Wangb,⁎, Ziyuan Pub, Jingyun Hub, Xuesong Wanga,c,⁎, Ruimin Keb


    چکیده انگلیسی:

    A model used for velocity control during car following is proposed based on reinforcement learning (RL). To optimize driving performance, a reward function is developed by referencing human driving data and combining driving features related to safety, efficiency, and comfort. With the developed reward function, the RL agent learns to control vehicle speed in a fashion that maximizes cumulative rewards, through trials and errors in the simulation environment. To avoid potential unsafe actions, the proposed RL model is incorporated with a collision avoidance strategy for safety checks. The safety check strategy is used during both model training and testing phases, which results in faster convergence and zero collisions. A total of 1,341 carfollowing events extracted from the Next Generation Simulation (NGSIM) dataset are used to train and test the proposed model. The performance of the proposed model is evaluated by the comparison with empirical NGSIM data and with adaptive cruise control (ACC) algorithm implemented through model predictive control (MPC). The experimental results show that the proposed model demonstrates the capability of safe, efficient, and comfortable velocity control and outperforms human drivers in that it 1) has larger TTC values than those of human drivers, 2) can maintain efficient and safe headways around 1.2s, and 3) can follow the lead vehicle comfortably with smooth acceleration (jerk value is only a third of that of human drivers). Compared with the MPC-based ACC algorithm, the proposed model has better performance in terms of safety, comfort, and especially running speed during testing (more than 200 times faster). The results indicate
    Keywords: Car following | Autonomous driving | Velocity control | Reinforcement learning | NGSIM | Deep Deterministic Policy Gradient (DDPG)


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 14
    حجم فایل: 2292 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi