دانلود مقاله انگلیسی رایگان:یک روش جدید پیش بینی دمای محور بر اساس تجزیه ، بهینه سازی یادگیری تقویتی و شبکه عصبی - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • A novel axle temperature forecasting method based on decomposition, reinforcement learning optimization and neural network A novel axle temperature forecasting method based on decomposition, reinforcement learning optimization and neural network
    A novel axle temperature forecasting method based on decomposition, reinforcement learning optimization and neural network

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    A novel axle temperature forecasting method based on decomposition, reinforcement learning optimization and neural network


    ترجمه فارسی عنوان مقاله:

    یک روش جدید پیش بینی دمای محور بر اساس تجزیه ، بهینه سازی یادگیری تقویتی و شبکه عصبی


    منبع:

    Sciencedirect - Elsevier - Advanced Engineering Informatics, 44 (2020) 101089. doi:10.1016/j.aei.2020.101089


    نویسنده:

    Hui Liu⁎, Chengming Yu, Chengqing Yu, Chao Chen, Haiping Wu


    چکیده انگلیسی:

    Axle temperature forecasting technology is important for monitoring the status of the train bogie and preventing the hot axle and other dangerous accidents. In order to achieve high-precision forecasting of axle temperature, a hybrid axle temperature time series forecasting model based on decomposition preprocessing method, parameter optimization method, and the Back Propagation (BP) neural network is proposed in this study. The modeling process consists of three phases. In stage I, the empirical wavelet transform (EWT) method is used to preprocess the original axle temperature series by decomposing them into several subseries. In stage II, the Q-learning algorithm is used to optimize the initial weights and thresholds of the BP neural network. In stage III, the QBPNN network is used to build the forecasting model and complete predicting all subseries. And the final forecasting results are generated by combining all prediction results of subseries. By comparing all results over three case predictions, it can be concluded that: (a) the proposed Q-learning based parameter optimization method is effective in improving the accuracy of the BP neural network and works better than the traditional population-based optimization methods; (b) the proposed hybrid axle temperature forecasting model can get accurate prediction results in all cases and provides the best accuracy among eight general models.
    Keywords: Axle temperature forecasting | Hybrid model | Empirical wavelet transform | Q-learning algorithm | Parameter optimization | Q-BPNN network


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    حجم فایل: 4695 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi