سال انتشار:
2020
عنوان انگلیسی مقاله:
Learning pareto optimal solution of a multi-attribute bilateral negotiation using deep reinforcement
ترجمه فارسی عنوان مقاله:
یادگیری راه حل بهینه پارتو یک مذاکره دوجانبه چند شاخصه با استفاده از تقویت عمیق
منبع:
Sciencedirect - Elsevier - Electronic Commerce Research and Applications, 43 (2020) 100987: doi:10:1016/j:elerap:2020:100987
نویسنده:
Mina Montazeri, Hamed Kebriaei⁎, Babak N. Araabi
چکیده انگلیسی:
This paper aims to design an intelligent buyer to learn how to decide in an incomplete information multiattribute
bilateral simultaneous negotiation. The buyer does not know the negotiation strategy of the seller and
only have access to the historical data of the previous negotiations. Using the historical data and clustering
method, the type of seller is identified online during the negotiation. Then, the deep reinforcement learning
method is utilized to support the buyer to learn its optimal decision. In the complete information case, we prove
that the negotiation admits a unique Nash bargaining solution with possibly asymmetric negotiation powers. In
comprehensive simulation studies, the efficiency of the proposed learning agent is evaluated in different scenarios
and we show that the learning negotiation with incomplete information is converged to a Pareto optimal
solution. Then, using the concept of the Nash bargaining solution, the negotiation power of the buyer is assessed
in negotiation.
Keywords: Multi-attribute negotiation | Deep auto encoder | Actor-critic | Nash bargaining solution | Bargaining power
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0