دانلود مقاله انگلیسی رایگان:یک الگوریتم بهینه سازی چند هدفه تکاملی مبتنی بر یادگیری تقویتی برای تخصیص طیف در شبکه های رادیویی شناختی - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • A Reinforcement Learning based evolutionary multi-objective optimization algorithm for spectrum allocation in Cognitive Radio networks A Reinforcement Learning based evolutionary multi-objective optimization algorithm for spectrum allocation in Cognitive Radio networks
    A Reinforcement Learning based evolutionary multi-objective optimization algorithm for spectrum allocation in Cognitive Radio networks

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    A Reinforcement Learning based evolutionary multi-objective optimization algorithm for spectrum allocation in Cognitive Radio networks


    ترجمه فارسی عنوان مقاله:

    یک الگوریتم بهینه سازی چند هدفه تکاملی مبتنی بر یادگیری تقویتی برای تخصیص طیف در شبکه های رادیویی شناختی


    منبع:

    Sciencedirect - Elsevier - Physical Communication, 43 (2020) 101196. doi:10.1016/j.phycom.2020.101196


    نویسنده:

    Amandeep Kaur ∗, Krishan Kumar


    چکیده انگلیسی:

    To cope up with drastically increasing demand for radio resources lead to raise a challenge to the wireless community. The limited radio spectrum and fixed spectrum allocation strategy have become a bottleneck for various wireless communication. Cognitive Radio (CR) technology along with potential benefits of machine learning has attracted substantial research interest especially in the context of spectrum management. However, a variety of performance attributes as objectives draw attention during the technological preparations for spectrum management such as higher spectral efficiency, lower latency, higher network capacity, and better energy efficiency as these objectives are often conflicting with each other. Hence, this paper addresses the spectrum allocation problem concerning network capacity and spectrum efficiency as conflicting objectives and model the scenario as a multiobjective optimization problem in CR networks. An improved version of the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) which combines the feature of evolutionary algorithm and machine learning called Non-dominated Sorting Genetic Algorithm based on Reinforcement Learning (NSGARL) is proposed which incorporates a self-tuning parameter approach to handle multiple conflicting objectives. The numerical findings validate the effectiveness of the proposed algorithm through the Pareto optimal set and obtain optimal solution efficiently to satisfy various requirements of spectrum allocation in CR networks.
    Keywords: Cognitive Radio (CR) networks | Multi-objective optimization | NSGA-II | NSGA-RL | Reinforcement learning | Spectrum allocation


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 12
    حجم فایل: 1818 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi