دانلود مقاله انگلیسی رایگان:یک روش جدید یادگیری تقویتی برای بهبود راحتی سرنشین از طریق باز و بسته شدن پنجره - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری تقویتی رایگان
  • A novel reinforcement learning method for improving occupant comfort via window opening and closing A novel reinforcement learning method for improving occupant comfort via window opening and closing
    A novel reinforcement learning method for improving occupant comfort via window opening and closing

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    A novel reinforcement learning method for improving occupant comfort via window opening and closing


    ترجمه فارسی عنوان مقاله:

    یک روش جدید یادگیری تقویتی برای بهبود راحتی سرنشین از طریق باز و بسته شدن پنجره


    منبع:

    Sciencedirect - Elsevier - Sustainable Cities and Society, 61 (2020) 102247. doi:10.1016/j.scs.2020.102247


    نویسنده:

    Mengjie Hana, Ross Maya, Xingxing Zhanga,*, Xinru Wanga, Song Panb, Da Yanc, Yuan Jinc


    چکیده انگلیسی:

    An occupants window opening and closing behaviour can significantly influence the level of comfort in the indoor environment. Such behaviour is, however, complex to predict and control conventionally. This paper, therefore, proposes a novel reinforcement learning (RL) method for the advanced control of window opening and closing. The RL control aims at optimising the time point for window opening/closing through observing and learning from the environment. The theory of model-free RL control is developed with the objective of improving occupant comfort, which is applied to historical field measurement data taken from an office building in Beijing. Preliminary testing of RL control is conducted by evaluating the control method’s actions. The results show that the RL control strategy improves thermal and indoor air quality by more than 90% when compared with the actual historically observed occupant data. This methodology establishes a prototype for optimally controlling window opening and closing behaviour. It can be further extended by including more environmental parameters and more objectives such as energy consumption. The model-free characteristic of RL avoids the disadvantage of implementing inaccurate or complex models for the environment, thereby enabling a great potential in the application of intelligent control for buildings.
    Keywords: Markov decision processes | Reinforcement learning | Window control | Indoor comfort | Occupant


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 11
    حجم فایل: 1446 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi