دانلود مقاله انگلیسی رایگان:بهینه سازی قوی مبتنی بر داده ها برای مدیریت عدم قطعیت در مدل های برنامه ریزی زنجیره تامین - 2021
دانلود بهترین مقالات isi همراه با ترجمه فارسی 2
دانلود مقاله انگلیسی زنجیره تامین رایگان
  • Data Driven Robust Optimization for Handling Uncertainty in Supply Chain Planning Models Data Driven Robust Optimization for Handling Uncertainty in Supply Chain Planning Models
    Data Driven Robust Optimization for Handling Uncertainty in Supply Chain Planning Models

    سال انتشار:

    2021


    عنوان انگلیسی مقاله:

    Data Driven Robust Optimization for Handling Uncertainty in Supply Chain Planning Models


    ترجمه فارسی عنوان مقاله:

    بهینه سازی قوی مبتنی بر داده ها برای مدیریت عدم قطعیت در مدل های برنامه ریزی زنجیره تامین


    منبع:

    Sciencedirect - Elsevier - Chemical Engineering Science, Journal Pre-proof, 116889: doi:10:1016/j:ces:2021:116889


    نویسنده:

    Kapil M. Gumte


    چکیده انگلیسی:

    While addressing supply chain planning under uncertainty, Robust Optimization (RO) is regarded as an efficient and tractable method. As RO involves calculation of several statistical moments or maximum / minimum values involving the objective functions under realizations of these uncertain parameters, the accuracy of this method significantly depends on the efficient techniques to sample the uncertainty parameter space with limited amount of data. Conventional sampling techniques, e.g. box/budget/ellipsoidal, work by sampling the uncertain parameter space inefficiently, often leading to inaccuracies in such estimations. This paper proposes a methodology to amalgamate machine learning and data analytics with RO, thereby making it data-driven. A novel neuro fuzzy clustering mechanism is implemented to cluster the uncertain space such that the exact regions of uncertainty are optimally identified. Subsequently, local density based boundary point detection and Delaunay triangulation based boundary construction enable intelligent Sobol based sampling to sample the uncertain parameter space more accurately. The proposed technique is utilized to explore the merits of RO towards addressing the uncertainty issues of product demand, machine uptime and production cost associated with a multiproduct, and multisite supply chain planning model. The uncertainty in supply chain model is thoroughly analysed by carefully constructing examples and its case studies leading to large scale mixed integer linear and nonlinear programming problems which were efficiently solved in GAMS framework. Demonstration of efficacy of the proposed method over the box, budget and ellipsoidal sampling method through comprehensive analysis adds to other highlights of the current work.
    Keywords: Uncertainty Modelling | Supply chain Management | Data driven Robust Optimization | Neuro Fuzzy Clustering | Multi-Layered Perceptron


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 33
    حجم فایل: 816 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi