دانلود مقاله انگلیسی رایگان:مقایسه طبقه بندی کننده های یادگیری ماشین: مطالعه موردی هشدارهای دما در یک زنجیره تأمین دارویی - 2021
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی زنجیره تامین رایگان
  • Comparison of machine learning classifiers: A case study of temperature alarms in a pharmaceutical supply chain Comparison of machine learning classifiers: A case study of temperature alarms in a pharmaceutical supply chain
    Comparison of machine learning classifiers: A case study of temperature alarms in a pharmaceutical supply chain

    سال انتشار:

    2021


    عنوان انگلیسی مقاله:

    Comparison of machine learning classifiers: A case study of temperature alarms in a pharmaceutical supply chain


    ترجمه فارسی عنوان مقاله:

    مقایسه طبقه بندی کننده های یادگیری ماشین: مطالعه موردی هشدارهای دما در یک زنجیره تأمین دارویی


    منبع:

    Sciencedirect - Elsevier - Information Systems, 100 (2021) 101759: doi:10:1016/j:is:2021:101759


    نویسنده:


    چکیده انگلیسی:

    Temperature deviations are critical in a pharmaceutical supply chain (SC) due to quality deterioration concerns and resulting health risks. The current solutions ensuring temperature maintenance are either labor-intensive or prone to triggering alarms that require no corrective measures, which, in turn, increase the alarm investigation costs. Machine learning (ML) methods have fared well both in the areas characterized by the execution of repetitive tasks and in the identification of false alarms; however, they have not been applied in the context of temperature monitoring in a pharmaceutical SC. In this paper, we used the real-world data of a large international logistics service provider for the period of 2013–2018 and compared the optimized performance of 10 ML classification methods in the task of false temperature alarm identification. Such additional features as temperature in the location of possible physical handling and average temperature deviation were either externally collected or estimated to enrich the models. In general, gradient boosting achieved the best performance in our evaluations, with an accuracy of 95.9% in comparison with the value of 16.6% demonstrated by the current legacy rule-based system. The feature ranking and sensitivity tests pointed to the strength of the features indicating an absolute temperature deviation and the location of cargo along the SC. The tests simulating model applications on new dissimilar observations showed various performance losses across classifiers, with the best stability retained for a new customer scenario and largest performance decreases for a new temperature range scenario.© 2021 Elsevier Ltd. All rights reserved.
    Keywords: Cold supply chain | Pharmaceutical | Temperature alarm | Rule-based monitoring | Machine learning | Prediction


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 16
    حجم فایل: 694 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi