دانلود مقاله انگلیسی رایگان:یک سیستم تشخیص بیماری چند نمایه از طریق نمایندگی ویژگی مبتنی بر منطقه جمعی - 2021
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی بیومتریک رایگان
  • An automatic multi-view disease detection system via Collective Deep Region-based Feature Representation An automatic multi-view disease detection system via Collective Deep Region-based Feature Representation
    An automatic multi-view disease detection system via Collective Deep Region-based Feature Representation

    سال انتشار:

    2021


    عنوان انگلیسی مقاله:

    An automatic multi-view disease detection system via Collective Deep Region-based Feature Representation


    ترجمه فارسی عنوان مقاله:

    یک سیستم تشخیص بیماری چند نمایه از طریق نمایندگی ویژگی مبتنی بر منطقه جمعی


    منبع:

    Sciencedirect - Elsevier - Future Generation Computer Systems, 115 (2021) 59-75: doi:10:1016/j:future:2020:08:038


    نویسنده:


    چکیده انگلیسی:

    With today’s growing requirements in disease diagnosis, we are constantly looking for better solutions. To meet the current demands, a disease detection system being highly effective as well as efficient is required. Existing and popular medical biometrics methods mainly focus on the local features extracted from raw medical image data, rather than study them globally. Meanwhile, prior knowledge is pre- defined in these methods so that procedures are inconsistent and require more manual operations. To address these, we present an automatic multi-view disease detection system, which contains a series of automatic procedures. The system first takes a tuple of images containing the face, tongue, and sublingual vein as the multi-view input, before directly outputting the predicted class label. To perform multi-view disease diagnosis, we propose a collective deep region-based feature representation. In summary, there are three real innovations in this paper: (1) Automated end-to-end medical biometrics system, (2) Deep region-based feature representation, (3) Multi-view multi-disease medical biometrics diagnosis. Extensive experiments were conducted on four diseases and one healthy control group using binary classification, showing both the effectiveness and efficiency of the proposed system. The average accuracy achieved was 95.8%, 96.49%, 96%, and 96.8% for breast tumor, heart disease, fatty liver, and lung tumor versus healthy control group taking 0.0031s, 0.003s, 0.0046s, and 0.0033s to process each sample respectively.© 2020 Elsevier B.V. All rights reserved.
    Keywords: Disease detection system | Multi-view learning | Feature representation | Medical biometrics | Image segmentation


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 2803
    حجم فایل: 17 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi