دانلود مقاله انگلیسی رایگان:تشخیص بیومتریک با استفاده از دستگاه های پوشیدنی در تنظیمات واقعی - 2021
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی بیومتریک رایگان
  • Biometric recognition using wearable devices in real-life settings Biometric recognition using wearable devices in real-life settings
    Biometric recognition using wearable devices in real-life settings

    سال انتشار:

    2021


    عنوان انگلیسی مقاله:

    Biometric recognition using wearable devices in real-life settings


    ترجمه فارسی عنوان مقاله:

    تشخیص بیومتریک با استفاده از دستگاه های پوشیدنی در تنظیمات واقعی


    منبع:

    Sciencedirect - Elsevier - Pattern Recognition Letters, 146 (2021) 260-266: doi:10:1016/j:patrec:2021:03:020


    نویسنده:

    Emanuela Piciucco


    چکیده انگلیسی:

    The popularity of wearable devices, such as smart glasses, chestbands, and wristbands, is nowadays rapidly growing, thanks to the fact that they can be used to track physical activity and monitor users’ health. Recently, researchers have proposed to exploit their capability to collect physiological signals for enabling automatic user recognition. Wearable devices inherently provide the means for detecting their unauthorized usage, or for being used as front-end in biometric recognition systems controlling the access to either physical or virtual locations and services. The present work evaluates the feasibility of performing biometric recognition using signals captured by wearable devices, considering data collected through off-the-shelf commercial wristbands, and comparing recordings taken during two distinct sessions separated by an average time of 7 days. In more detail, recognition is performed leveraging on electrodermal activity (EDA) and blood volume pulse (BVP), considering measurements taken from 17 subjects performing natural activities such as attending or teaching lectures. Several tests have been carried out to determine the most effective representation of the considered EDA and BVP signals, as well as the most suitable classifier. The best recognition performance has been achieved exploiting convolutional neural networks to extract discriminative characteristics from the combined spectrograms of the employed EDA and BVP data, guaranteeing average correct identification rate of 98.58% for test samples lasting 30 seconds.
    Keywords: Wearable | Biometrics | Machine learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 7
    حجم فایل: 489 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi