دانلود مقاله انگلیسی رایگان:پیش بینی بیومتری خودکار جنین با استفاده از معماری شبکه ای پیچیده عمیق جدید - 2021
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی بیومتریک رایگان
  • Automatic fetal biometry prediction using a novel deep convolutional network architecture Automatic fetal biometry prediction using a novel deep convolutional network architecture
    Automatic fetal biometry prediction using a novel deep convolutional network architecture

    سال انتشار:

    2021


    عنوان انگلیسی مقاله:

    Automatic fetal biometry prediction using a novel deep convolutional network architecture


    ترجمه فارسی عنوان مقاله:

    پیش بینی بیومتری خودکار جنین با استفاده از معماری شبکه ای پیچیده عمیق جدید


    منبع:

    Sciencedirect - Elsevier - Physica Medica, 88 (2021) 127-137: doi:10:1016/j:ejmp:2021:06:020


    نویسنده:

    Mostafa Ghelich Oghli


    چکیده انگلیسی:

    Purpose: Fetal biometric measurements face a number of challenges, including the presence of speckle, limited soft-tissue contrast and difficulties in the presence of low amniotic fluid. This work proposes a convolutional neural network for automatic segmentation and measurement of fetal biometric parameters, including biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL) from ultra- sound images that relies on the attention gates incorporated into the multi-feature pyramid Unet (MFP-Unet) network.
    Methods: The proposed approach, referred to as Attention MFP-Unet, learns to extract/detect salient regions automatically to be treated as the object of interest via the attention gates. After determining the type of anatomical structure in the image using a convolutional neural network, Niblack’s thresholding technique was applied as pre-processing algorithm for head and abdomen identification, whereas a novel algorithm was used for femur extraction. A publicly-available dataset (HC18 grand-challenge) and clinical data of 1334 subjects were utilized for training and evaluation of the Attention MFP-Unet algorithm.
    Results: Dice similarity coefficient (DSC), hausdorff distance (HD), percentage of good contours, the conformity coefficient, and average perpendicular distance (APD) were employed for quantitative evaluation of fetal anatomy segmentation. In addition, correlation analysis, good contours, and conformity were employed to evaluate the accuracy of the biometry predictions. Attention MFP-Unet achieved 0.98, 1.14 mm, 100%, 0.95, and0.2 mm for DSC, HD, good contours, conformity, and APD, respectively.
    Conclusions: Quantitative evaluation demonstrated the superior performance of the Attention MFP-Unet compared to state-of-the-art approaches commonly employed for automatic measurement of fetal biometric parameters.
    Keywords: Fetal biometry | Ultrasound imaging | Deep learning | Convolutional neural network | Image classification


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 11
    حجم فایل: 4737 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi