دانلود مقاله انگلیسی رایگان:تشخیص شخصی نوار قلب ECG مبتنی بر وابستگی های عملکردی و ساختاری سیگنالها با استفاده از نمایش فرکانس زمان و CNN مورفولوژیکی تکاملی - 2021
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی بیومتریک رایگان
  • A novel multi-lead ECG personal recognition based on signals functional and structural dependencies using time-frequency representation and evolutionary morphological CNN A novel multi-lead ECG personal recognition based on signals functional and structural dependencies using time-frequency representation and evolutionary morphological CNN
    A novel multi-lead ECG personal recognition based on signals functional and structural dependencies using time-frequency representation and evolutionary morphological CNN

    سال انتشار:

    2021


    عنوان انگلیسی مقاله:

    A novel multi-lead ECG personal recognition based on signals functional and structural dependencies using time-frequency representation and evolutionary morphological CNN


    ترجمه فارسی عنوان مقاله:

    تشخیص شخصی نوار قلب ECG مبتنی بر وابستگی های عملکردی و ساختاری سیگنالها با استفاده از نمایش فرکانس زمان و CNN مورفولوژیکی تکاملی


    منبع:

    Sciencedirect - Elsevier - Biomedical Signal Processing and Control, 68 (2021) 102766: doi:10:1016/j:bspc:2021:102766


    نویسنده:

    Majid Sepahvand


    چکیده انگلیسی:

    Biometric recognition systems have been employed in many aspects of life such as security technologies, data protection, and remote access. Physiological signals, e.g. electrocardiogram (ECG), can potentially be used in biometric recognition. From a medical standpoint, ECG leads have structural and functional dependencies. In fact, precordial ECG leads view the heart from different axial angles, whereas limb leads view it from various coronal angles. This study aimed to design a personal biometric recognition system based on ECG signals by estimating these latent medical variables. To estimate functional dependencies, within-correlation and cross- correlation in time-frequency domain between ECG leads were calculated and represented in the form of extended adjacency matrices. CNN trees were then introduced through genetic programming for the automated estimation of structural dependencies in extended adjacency matrices. CNN trees perform the deep feature learning process by using structural morphology operators. The proposed system was designed for both closed-set identification and verification. It was then tested on two datasets, i.e. PTB and CYBHi, for performance evaluation. Compared with the state-of-the-art methods, the proposed method outperformed all of them.
    Keywords: Biometrics | Electrocardiogram | Functional dependencies | Structural dependencies | Genetic programming | Convolutional neural networks


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 12
    حجم فایل: 3695 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi