دانلود مقاله انگلیسی رایگان:مدل ترکیبی مبتنی بر باور عمیق برای سیستم بیومتریک چند حالته برای برنامه های امنیتی آینده - 2021
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی بیومتریک رایگان
  • Deep belief network-based hybrid model for multimodal biometric system for futuristic security applications Deep belief network-based hybrid model for multimodal biometric system for futuristic security applications
    Deep belief network-based hybrid model for multimodal biometric system for futuristic security applications

    سال انتشار:

    2021


    عنوان انگلیسی مقاله:

    Deep belief network-based hybrid model for multimodal biometric system for futuristic security applications


    ترجمه فارسی عنوان مقاله:

    مدل ترکیبی مبتنی بر باور عمیق برای سیستم بیومتریک چند حالته برای برنامه های امنیتی آینده


    منبع:

    Sciencedirect - Elsevier - Journal of Information Security and Applications, 58 (2021) 102707: doi:10:1016/j:jisa:2020:102707


    نویسنده:

    M. Vijay


    چکیده انگلیسی:

    Biometrics is the technology to identify humans uniquely based on face, iris, and fingerprints, etc. Biometric authentication allows the person recognition automatically on the basis of behavioral or physiological charac- teristics. Biometrics are broadly employed in several commercial as well as the official identification systems for automatic access control. This paper introduces the model for multimodal biometric recognition based on score level fusion method. The overall procedure of the proposed method involves five steps, such as pre-processing, feature extraction, recognition score using Multi- support vector neural network (Multi-SVNN) for all traits, score level fusion, and recognition using deep belief neural network (DBN). The first step is to input the training images into pre-processing steps. Thus, the pre-processing of three traits, like iris, ear, and finger vein is done. Then, the feature extraction is done for each modality to extract the features. After that, the texture features are extracted from pre-processed images of the ear, iris, and finger vein, and the BiComp features are acquired from individual images using a BiComp mask. Then, the recognition score is computed based on the Multi-SVNN classifier to provide the score individually for all three traits, and the three scores are provided to the DBN. The DBN is trained using the chicken earthworm optimization algorithm (CEWA). The CEWA is the integration of the chicken swarm optimization (CSO), and earthworm optimization algorithm (EWA) for the optimal authentication of the person. The analysis proves that the developed method acquired a maximal accuracy of 95.36%, maximal sensitivity of 95.85%, and specificity of 98.79%, respectively.
    Keywords: Multi-modal Bio-metric system | Chicken Swarm Optimization | Earthworm Optimization algorithm | Deep Belief Network | Multi-SVNN


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 0
    حجم فایل: 0 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi