دانلود مقاله انگلیسی رایگان:پیش بینی محتوای اکسیدهای سیلیکون ، آلومینیوم و آهن در خاک با استفاده از بینایی ماشین و مادون قرمز - 2021
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی بینایی ماشین رایگان
  • Predicting silicon, aluminum, and iron oxides contents in soil using computer vision and infrared Predicting silicon, aluminum, and iron oxides contents in soil using computer vision and infrared
    Predicting silicon, aluminum, and iron oxides contents in soil using computer vision and infrared

    سال انتشار:

    2021


    عنوان انگلیسی مقاله:

    Predicting silicon, aluminum, and iron oxides contents in soil using computer vision and infrared


    ترجمه فارسی عنوان مقاله:

    پیش بینی محتوای اکسیدهای سیلیکون ، آلومینیوم و آهن در خاک با استفاده از بینایی ماشین و مادون قرمز


    منبع:

    Sciencedirect - Elsevier - Microchemical Journal, 170 (2021) 106669: doi:10:1016/j:microc:2021:106669


    نویسنده:

    Pedro Augusto de Oliveira Morais


    چکیده انگلیسی:

    Silicon, aluminum, and iron oxides are very abundant in soil. Their quantification is important for soil classi- fication, which is a relevant information for the sustainable use and management of soils. In soil laboratories the determination of these oxides, using standard methods, is destructive, costly, laborious, and time consuming. This article presents two analytical methods to quantify SiO2, Al2O3, and Fe2O3 in soil samples using computer vision (COMPVIS) and mid-infrared spectroscopy (MIR). These two methods were developed using 52 soil samples from four states of Brazil. Digital images and MIR spectra were correlated with oxides contents quantified by atomic absorption spectroscopy (AAS) after acid digestion using three multivariate calibration methods: PLS, SPA-MLR, and LS-SVM. This the first time that soil image data has been correlated to silicon and aluminum oxides and the proposed method found excellent correlation values (r2 ranging from 0.95 to 0.99). With the exception of SiO2, MIR resulted in similar predictions to the COMPVIS method’s. LS-SVM presented r2 higher than 0.95 for all oxides estimates. The developed analyses are low cost, fast, and environmentally sustainables.1.
    Keywords: SVM | MIA | oil chemistry | Green chemistry | Hematite | Sustainability


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 7
    حجم فایل: 2989 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi